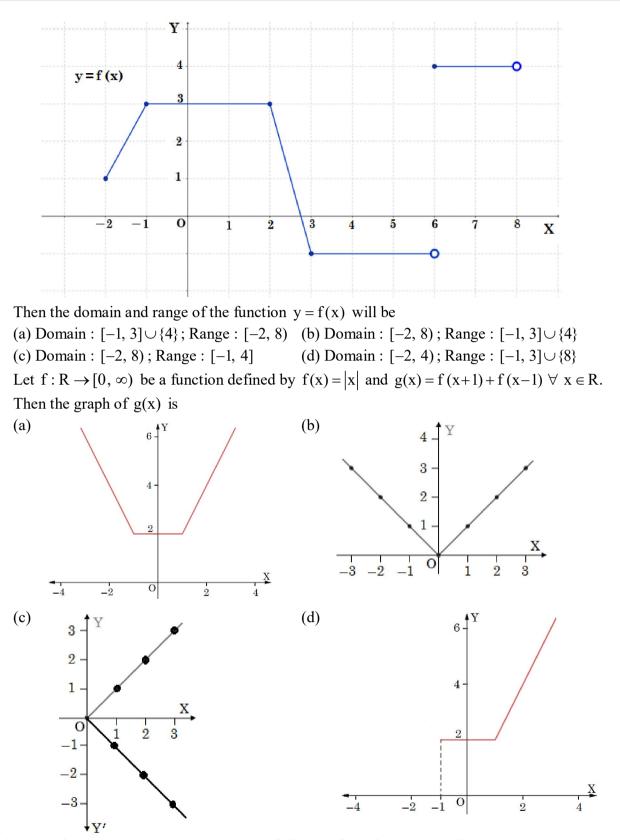


 \square Select the correct option in the followings. Each question carries 1 mark.

01.	Domain of $f(x) = \frac{1}{x+1}$ is $x \in$						
	(a) \mathbb{R} (Real nos.) (b) $\mathbb{R}-1$	(c) $\mathbb{R} - \{-1\}$	(d) $(-\infty, -1)$				
02.	If $ \mathbf{x} - 4 \ge 0$, then $\mathbf{x} \in$						
		(c) $(-\infty, -4) \cup (4, \infty)$	(d) (-4,4)				
03.	If A = {0, 1, 2} and, B = { α , β }, then no. of functions defined from A to B is						
	(a) 64 (b) 9	(c) 8	(d) 6				
04.	For the function $y = -x $, we shall always have $y \in$						
		(c) $[0,\infty)$	(d) Z				
05.	If $A = \{0, 2, 4\}$, $B = \{1, 3\}$ then, a relation R	If $A = \{0, 2, 4\}$, $B = \{1, 3\}$ then, a relation R defined from A to B, having maximum number of					
	elements is given by						
	(a) $B \times B$ (b) $A \times A$	(c) $A \times B$	(d) $B \times A$				
06.	For the sets $A = \{2,3\}$ and $B = \{1,5,6\}$, the	e total number of relation	ons from A to B will be				
	(a) 64 (b) 16	(c) 8	(d) 9				
07.	Let $A = \{1, 2, 3\}, B = \{4, 5, 6\}.$						
	For a relation $R': B \to A$ defined as $R' = \{(x, y): x \in B, y \in A; x \text{ is divisible by } y\}$, the roste						
	form is given by						
	(a) $\{(1,4),(2,4),(1,5),(1,6),(2,6),(3,6)\}$ (b) $\{(4,1),(4,2),(5,1),(6,1),(6,2),(6,3)\}$						
	(c) $\{(4,1),(4,2),(5,1),(6,1),(6,2)\}$ (d) $\{(4,1),(4,2),(6,1),(6,2),(6,3)\}$						
08.	For the sets $A = \{2, 3\}, B = \{4, 5, 6\}$, the value of the sets $A = \{2, 3\}, B = \{4, 5, 6\}$, the value of the set $A = \{2, 3\}, B = \{4, 5, 6\}$.	lue of $n(A \times B)$ will be					
	(a) 8 (b) 9	(c) 6	(d) 64				
09.	Domain of $f(x) = \frac{1}{[x]}$ is given by $x \in$						
	(a) $x \in \mathbb{R}$ (b) $x \in Z$	(c) $x \in \mathbb{R} - Z$	(d) $x \in \mathbb{R} - [0,1)$				
10.	Consider the graph shown.						
	∱y-axis						
	Which function is represented by this graph						
		(a) Greatest integer f					
	←	 (b) Modulus function (c) Signum function (d) Logarithmic function 					
	0 x-axis						
		(u) Logarianne fane					
	\downarrow						
11.	$f(x) = \sqrt{[x] - x}$ is defined when $x \in$						
	(a) \mathbb{R} (Real nos.) (b) Z	(c) $\mathbb{R} - \mathbb{R}^-$	(d) 				


MATHEMATICIA By O.P. GUPTA : A New Approach in Mathematics

MATHEMATICS FOR XI

12.	For $f(x) = 3 - x $, the range is given by					
	(a) (−∞,3)	(b) [0,∞)	(c) $\mathbb{R} - \mathbb{R}^-$	(d) $(-\infty, 3]$		
13.	Domain of $f(x) = \sqrt{1}$	$1+x^2$ is				
	(a) \mathbb{R} (Real nos.)	(b) [1,∞)	(c) (−∞,1]	(d) $(1,\infty)$		
14.	Domain of $f(x) = \frac{1}{\sqrt{x + x }}$ is					
		(b) $x \in \mathbb{R} - \mathbb{R}^+$				
15.		$\{4,5,6\}$. Let S: A \rightarrow I		here $S = \{(1,4), (2,5), (3,6), (1,5)\}$. Then, S is		
	(a) a relation only(c) a relation and function both		(b) a function only(d) neither relation nor function			
16.	For $R = \{(x, y) : y = x - 1 , x \in Z \text{ and } x < 3\}$, the domain of R is					
	(a) $\{\pm 3, \pm 2, \pm 1\}$		(c) $\{\pm 2, \pm 1, 0\}$	(d) $\{\pm 3, \pm 2, \pm 1, 0\}$		
17.	If $y = \sqrt{(9-x)^2}$, then $x \in$					
	(a) \mathbb{R} (Real nos.)	(b) $\mathbb{R}-\{9\}$	(c) (9,∞)	(d) [9,∞)		
18.		ions defined on the set				
	(a) 1 $(1 ; f r)$	(b) 0	(c) 2	(d) 4		
19.	If $f(x) = \begin{cases} -1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \end{cases}$	A 10	ction $f(x)$ is			
17.	If $f(x) = \begin{cases} 0, \text{ if } x = 0 \\ 1, \text{ if } x > 0 \end{cases}$, then domain of function $f(x)$ is					
	(a) {-1, 0, 1}		(c) $x \in Z$ (integers)	(d) $x \in R$ (real nos.)		
20.		$+\sqrt{x^2-9}$, the domain				
	(a) $x \in \mathbb{R}$ (Real nos.		(c) $x \in [3,\infty)$	(d) $x \in (-\infty, -3] \cup [3, \infty)$		
21.	Domain of $f(x) = -$	$\frac{1}{1}$ is	107			
		Λ				
22.	(a) $x \in \mathbb{R}$ (Real nos If $A = (1, 2)$, $P = (5, 3)$		(c) $x \in [0,\infty)$	(d) $x \in (0,\infty)$		
22.		$\{6,7\}$ and $C = \{5,6,7,8\}$				
	L · · J	(a) $n[A \times (B \cup C)] = 6$ (b) $n[A \times (B \cup C)] = 14$ (c) $n[A \times (B \cap C)] = 8$ (d) $n[A \times (B \cup C)] = 8$				
23.	E 3	(x) = - 5x-3 , the range	· · · · · · · · · · · · · · · · · · ·			
25.	•	(b) $(-\infty, 0)$		(d) $(0,\infty)$		
24.		$\{(3,2),(3,4)\},$ then B		(4) (0, 1)		
	(a) $\{(2,1), (4,1), (2,3)\}$),(4,3)}	(b) $\{(1,2),(1,4),(3,2)\}$),(3,4)}		
	(c) $\{(1,2),(3,2)\}$		(d) $\{(1,2),(1,4),(3,2)\}$			
25.		(1,3), (2,1), (2,2), (2,3)				
76		(b) $\{1, 2\}$ 1 3) then y^x is	(c) $\{0, 1, 2, 3\}$	(d) $\{0, 1, 2\}$		
∠0.	If $(x-1, 2x-y) = (-(a) -3)$	· ·	(c) 1	(d) 0		
27.	If R be a relation from a set A to itself, then					
	(a) $\mathbf{R} = \mathbf{A}$	(b) $\mathbf{R} = \mathbf{A}^2$	(c) $R \subseteq A \times A$	(d) $R \subseteq A \times B$		

28.	If $2f(x) - 3f\left(\frac{1}{x}\right) = x^2$, $(x \neq 0)$, then $f(1) =$					
	(a) 1	(b) -1	(c) 0	(d) 2		
29.	Let [.] be a greatest integer function. For $-\frac{\pi}{2} < x < \frac{\pi}{2}$, the range of the function $f(x) = [2x]$ is					
			(c) $\{-4, \pm 3, \pm 2, \pm 1, 0\}$			
30.	If $f(x) = \frac{x+3}{x-3}$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then $g(1) =$					
	(a) f(1)	(b) f(0)	(c) $\{f(0)\}^2$	(d) $\{f(1)\}^2$		
31.	If $f(x) = \frac{ x }{4+ x }$, then	domain of $f(x)$ is				
			(c) $x \in [0, \infty)$	(d) $x \in (-\infty, \infty)$		
32.	Domain of $f(x) = \frac{1}{\sqrt{x - x^2}}$ is					
		(b) $R - (0, 1)$	(c) (0, 1)	(d) [0, 1]		
33.	If $[x]^2 - 5[x] - 6 = 0$,	where [.] denote the g	greatest integer function $(a) \begin{bmatrix} 1 & 0 \end{bmatrix} + \begin{bmatrix} 6 & 7 \end{bmatrix}$	$\begin{array}{c} \text{n, then } \mathbf{x} \in \\ (\mathbf{d}) \begin{bmatrix} 1 & 6 \end{bmatrix} \end{array}$		
34.	(a) $[-1,0) \odot [0,7]$ If A = {4, 5} and B =	$\{1, 2, 3\}, \text{ then}$	(c) $[-1,0] \cup [6,7)$ (c) $(4,1) \in B \times A$	(d) [-1, 0]		
	(a) $(4, 1) \in A \times B$	(b) $(2, 5) \in A \times B$	(c) $(4, 1) \in B \times A$	(d) $(2, 9) \in B \times A$		
35.	The number of empty (a) 1	y relations defined on a (b) 2	an empty set is (c) 0	(d) 4		
36.	Let $f(x) = \sqrt{1 + x^2}$, t					
	(a) $f(xy) = f(x)f(y)$ (b) $f(xy) \ge f(x)f(y)$ (c) $f(xy) \le f(x)f(y)$ (d) None of these					
37.	The domain and range of the real function f defined by $f(x) = \frac{4-x}{x-4}$ is given by					
	(a) Domain = R, Rang (c) Domain = $R - \{4\}$	Range $-\{-1\}$	(b) Domain = $R - \{1\}$ (d) Domain = $R - \{-\}$	-		
38.	Range of $y = \frac{3}{2-x^2}$	is	00			
	(a) $x > \frac{3}{2}$	(b) $x \ge \frac{3}{2}$	(c) $y > \frac{3}{2}$	(d) $y \ge \frac{3}{2}$		
39.	If $f(x) = \frac{x-1}{x+1}$, then					
	(a) $f\left(\frac{1}{x}\right) = f(x)$	(b) $f\left(\frac{1}{x}\right) = -f(x)$	(c) $f\left(\frac{1}{x}\right) = 2f(x)$	(d) $f\left(\frac{1}{x}\right) = -2f(x)$		
40.	Let f and g be two re	Let f and g be two real functions defined by $f(x) = \sqrt{x-1}$ and $g(x) = -2x+3$.				
	Then the domain of $\frac{g}{f}$ is					
	(a) $(1, \infty)$	(b) [1, ∞)	(c) $R - \left\{\frac{3}{2}\right\}$	(d) $(-\infty, 1]$		
41.	Consider the graph of the function $y = f(x)$ given below.					

41. Consider the graph of the function y = f(x) given below.

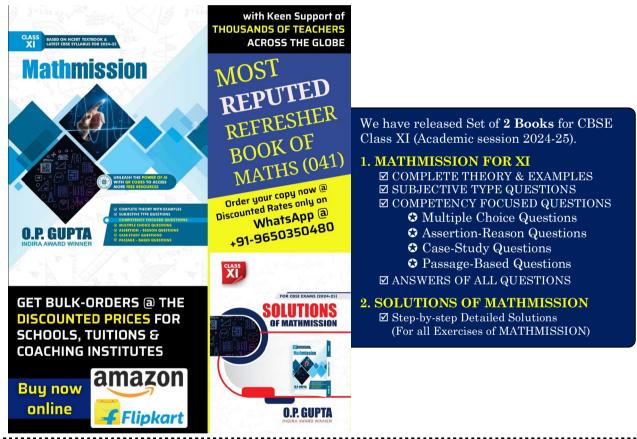
Question numbers 43 to 45 are Assertion and Reason based questions. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.

(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

(b) Both Assertion (A) and Reason (R) are true and Reason (R) is **not** the correct explanation of Assertion (A).

- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.

42.


43. Assertion (A) : If the functions defined by $f(x) = 3x^2 - 1$ and g(x) = 3 + x are equal, then the set of values of x will be $\left\{\frac{4}{3}, -1\right\}$.

Reason (R) : The range of greatest integer function f(x) = [x] is \mathbb{R} (set of real numbers).

44. Assertion (A): The ordered pair (5, 2) belongs to the relation $R = \{(x, y) : y = x - 5; x, y \in Z\}$. Reason (R): If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$, then $A = \{a, b\}$ and $B = \{x, y\}$.

45. Assertion (A) : Given that (x-2, y+5) and $\left(-2, \frac{1}{3}\right)$ are two equal ordered pairs, then 2024x + 3y + 14 = 0.

Reason (R) : If f and g are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5, then $(f \cdot g)(x) = 3x^3 + 5x^2 + 21x + 35$.

>>> With a lot of Blessings!

O.P. GUPTA

Author & Math Mentor
Indira Award Winner
The O.P. Gupta Advanced Math Classes
Think Academy, Near Dhansa Bus Stand
Metro Station Gate No.3, Najafgarh, Delhi

S Telegram / WhatsApp : +919650350480

YouTube.com/@theopgupta

Exclusive coaching for Maths (041) By O.P. GUPTA CBSE XII CBSE XI CUET JEE - MAIN NDA

MATHEMATICIA By O.P. GUPTA : A New Approach in Mathematics

TO

Mathmission

or, just type -

...a name you can bank upon!

Feel Safe to Share this Document with other math scholars

CLICK NOW FREE PDF TESTS AND Download **ASSIGNMENTS OF THE** CLASSES XII, XI & X theopgupta.com

To get FREE PDF Materials, join WhatsApp Teachers Group by Clicking on the Logo

If you are a Student, then you may join our Students Group

Flipkart

You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

For Bulk Orders of our Books at Discounted Price, contact on +91-9650350480