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K-nearest neighbor (KNN) based weighted multi-class twin support vector machines (KWMTSVM) is a
novel multi-class classification method. In this paper, we propose a novel least squares version of
KWMTSVM called LS-KWMTSVM by replacing the inequality constraints with equality constraints and
minimized the slack variables using squares of 2-norm instead of conventional 1-norm. This simple mod-
ification leads to a very fast algorithm with much better results. The modified primal problems in the pro-
posed LS-KWMTSVM solves only two systems of linear equations whereas two quadratic programming
problems (QPPs) need to solve in KWMTSVM. The proposed LS-KWMTSVM, same as KWMTSVM,
employed the weight matrix in the objective function to exploit the local information of the training sam-
ples. To exploit the inter class information, we use weight vectors in the constraints of the proposed LS-
KWMTSVM. If any component of vectors is zero then the corresponding constraint is redundant and thus
we can avoid it. Elimination of redundant constraints and solving a system of linear equations instead of
QPPs makes the proposed LS-KWMTSVM more robust and faster than KWMTSVM. The proposed LS-
KWMTSVM, commensurate as the KWMTSVM, all the training data points into a ‘‘1-versus-1-versus-rest”
structure, and thus our LS-KWMTSVM generate ternary output f�1;0;þ1g which helps to deal with
imbalance datasets. Numerical experiments on several UCI and KEEL imbalance datasets(with high
imbalance ratio) clearly indicate that the proposed LS-KWMTSVM has better classification accuracy com-
pared with other baseline methods but with remarkably less computational time.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Support vector machine (SVM) is one of the most powerful
kernel-based tools of machine learning used for classification and
regression problems [4,5]. It has been applied in several real-
world problems including electroencephalogram signal classifica-
tion [27], remote sensing [24], diagnosis of Alzheimer’s disease
[36], face detection [20]. SVM obtains a unique (global) optimal
separation by solving two quadratic programming problem (QPP)
which maximizing the margin among the two classes. The final
optimal hyperplane is selected to be the ‘‘middle one” between
the supporting hyperplanes. The main challenge of SVM formula-
tion is its high computational complexity of order Oð‘3Þ, where ‘

is the total number of training data points in classification prob-
lem. This hindrance of SVM algorithms restricts it to apply on large
datasets. To impoverish the high computational complexity prob-
lem, Jayadeva et al. [14] proposed a novel twin support vector
machine (TSVM), which is similar in spirit to generalized eigen-
value proximal support vector machines (GEPSVM) [21] that
obtains two non-parallel hyperplanes by solving two smaller size
QPPs. The formulation of SVM requires all data points, however,
data points in TSVM are distributed in such a way that one class
gives the constraints to the other class and vice versa. The idea
of dividing a large size QPP into two smaller size QPPs in TSVM
makes the algorithm approximately four times faster than stan-
dard SVM. Due to the low computational complexity, TSVM
becomes one of the most popular classification techniques for var-
ious applications. In the last one decade, many variants and exten-
sions of TSVM [15,16,25,26,29–32,39,42,46] have been proposed.
Kumar and Gopal [19] proposed least squares twin support vector
machines (LSTSVM) as a way to reduce QPPs in TSVM with a linear
system of equations by using a squared loss function instead of
hinge loss function. Tanveer et al. [34] proposed a novel robust
energy-based LSTSVM (RELS-TSVM) for classification which is the
top-ranked classifier according to the recent comprehensive evalu-
ation [33]. Datta et al. [7] proposed a novel classifier for imbal-
anced data classification with equal or unequal misclassification
costs. Recently, Datta et al. [8] proposed a robust multiobjective
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classifier which handle the class imbalance with pareto optimality.
Recently, Tanveer et al. [37] proposed a novel general TSVM with
pinball loss (Pin-GTSVM) by introducing pinball loss to the original
TSVM. Pin-GTSVM is noise insensitive and better generalization
performance to that of TSVM. To retain the sparsity in Pin-
GTSVM, Tanveer et al. [38,35] proposed a novel sparse pinball twin
SVM (SPTWSVM) which uses �-insensitive zone pinball loss func-
tion. SPTWSVM is sparse, insensitive to outliers, better generaliza-
tion performance and suitable for re-sampling. Recently, an
efficient algorithm termed as reduced universum twin SVM
(RUTSVM-CIL) [28] is proposed to solve the class imbalance learn-
ing. RUTSVM-CIL [28] is computationally efficient for large scale
class imbalanced datasets.

The variants of SVM and TSVM discussed above are suitable for
binary classification problems. However, multiclass classification
problems are more prevalent in real life situations such as speech
recognition, text classification and fault diagnosis. The classifica-
tion problem of multiclass is usually solved by a decomposition
and reconstruction procedure, when binary classification machines
are intended. This decomposition-reconstruction strategy includes
two approaches ‘‘one-versus-one” [3] and ‘‘one-versus-rest” [17].
For k-class classification problem, the first approach is to construct
kðk�1Þ

2 binary SVM classifiers, each of which involves only two kinds
of data points. Since the remaining data points are omitted in the
training process, and thus we receive unfavourable results. While
the second approach (one-versus-rest) constructs k binary classi-
fiers, each classifier involves with all of the data points. ‘‘one-
versus-all” approach leads to class disproportion problem and
may produce dreadful results. Angulo et al. [2] proposed an effec-
tual multiclass support vector machine classification algorithm
termed as K-SVCR, which employs ‘‘one-versus-one-versus-rest”
with ternary outputs f�1; 0; 1g, during the decomposition phase
K-SVCR uses a mixed classification and regression support vector

machines formulation. The K-SVCR constructs kðk�1Þ
2 binary SVM

classifiers, each classifier is implemented with all data points,
training avoids the risk of information loss and class distortion
problem. By consolidating the formalistic advantage of K-SVCR
and less computational complexity of TSVM, Xu et al. [44]
extended K-SVCR for multi-class TSVM termed as Twin-KSVC for
k-class classification problem. Twin-KSVC choose two focused
kinds of samples from k classes to construct two non-parallel
hyperplanes and the remaining samples are mapped into a region
between the two non-parallel hyperplanes. The optimal separating
hyperplanes are computed by resolving two smaller QPPs instead
of solving a large QPP in the original K-SVCR. Following the works
of Twin-KSVC and LST-KSVC, Nasiri et al. [23] recently proposed
least squares twin multi-class classification support vector
machine (LST-KSVC) which is extremely simple and fast algorithm.
In Twin-KSVC and LST-KSVC algorithms, data points contribute the
same weight for the construction of the hyperplanes, so that local
information of training samples is omitted, and inter-class infor-
mation is also not exploited. However, data points have different
influences on the hyperplanes. To exploit the intra-class as well
as inter-class information in multiclass classification problem, Xu
et al. [43] proposed an algorithm called KNN-based weighted mul-
ticlass twin support vector machines (KWMTSVM). In KWMTSVM,
K-nearest neighbor graph [44] is used to exploit the local informa-
tion of the training samples and weight matrix D1;D2 are employed
in the objective function, meanwhile weight vectors
Fv i

ði ¼ 1; 2Þ;Hv are introduced in constraints. If any component
of Fv i

;Hv is zero then it entail that the consonant constraint is
redundant.

Motivated by the works of [19,23,43], we propose a novel least
squares KNN-based weighted multiclass twin support vector
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machines (LS-KWMTSVM). The proposed LS-KWMTSVM is
endowed with the following attractive advantages:

� Unlike Twin-KSVC and KWMTSVM, the proposed LS-KWMTSVM
solves two systems of linear equations which leads to extremely
simple and fast algorithm. As a result, the proposed LS-
KWMTSVM does not need any external optimizer.

� The Sherman–Morrison–Woodbury (SMW) formulation is
employed to reduce the complexity of the nonlinear LS-
KWMTSVM.

� The proposed LS-KWMTSVM evaluates all the training data
points in a ‘‘1-versus-1-versus-rest” structure, so the proposed
LS-KWMTSVM inaugurate ternary output f�1; 0; 1g which
helps to deal with imbalance datasets.

� The proposed LS-KWMTSVM, same as KWMTSVM, uses KNN
graph approach to utilize the intra-class and inter-class infor-
mation, different weight matrices are given to data points for
the same class.

� Extensive numerical experimental are performed on UCI [22]
and KEEL benchmark imbalance datasets [1], and their results
are compared with three algorithms (Twin-KSVC [44], LST-
KSVC [23] and KWMTSVM [43]). The comparative results clearly
show the effectiveness and feasibility of the proposed LS-
KWMTSVM for solving imbalance classification problems.

The rest of paper is organized as follows. A brief introduction of
Twin-KSVC and KWMTSVM are presented in Section 2. Section 3
describes the detail of the proposed LS-KWMTSVM algorithm. Sec-
tion 4 discusses the computational complexity and in-depth anal-
ysis of proposed algorithm. In Section 5, we compare the proposed
LS-KWMTSVM to Twin-KSVC and KWMTSVM. Numerical experi-
ments on twelve UCI and KEEL benchmark datasets are accompa-
nied to evaluate the effectiveness of the proposed LS-KWMTSVM
algorithm in Section 6. Conclusions are presented in Section 7.

2. Related works

In this section, a brief framework of Twin-KSVC and KWMTSVM
are presented. For more details, the interested readers are referred
to [43,44].

2.1. Twin multi-class classification support vector machines (Twin-
KSVC)

A new variant of multi-class algorithm, called K-SVCR, was affi-
anced in [2] for the k-class classification problem, which originated
better results as it appraise all the data points into the ‘‘1-versus-1-
versus-rest” structure with outputs f�1;0;1g. By integrating both
the structural advantage of K-SVCR and the speed’s advantage of
TSVM, Xu et al. [44] proposed a novel multi-class classification
algorithm, called Twin-KSVC. The two variety of data points
extracted from k-classes are scrutinize as the focused classes, and
Twin-KSVC obtains two non-parallel hyperplanes corresponding
to two focused classes. The remain samples are epitomize into a
region between the above optimal hyperplanes. Let the matrix
A 2 R‘1�n represents the data samples of class +1, B 2 R‘2�n is corre-
sponding to the class �1 and C 2 R‘3�n represents the remaining
data points which are labeled 0. The nonlinear Twin-KSVC tries
to find two nonlinear kernel generated surfaces in the input space
defined as:

KðxT ;DT
� Þuþ þ bþ ¼ 0 and KðxT ;DT

� Þu� þ b� ¼ 0; ð1Þ
where D� ¼ ½A; B; C�;uþ; u� 2 Rn and K is an arbitrary kernel func-
tion. They can be obtained by resolving the following pair of QPPs:
ares KNN-based weighted multiclass twin SVM, Neurocomputing, https://
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min
uþ ; bþ ; n1 ;g1

1
2 kKðA;DT

� Þuþ þ e1bþk2 þ c1eT2n1 þ c2eT3g1

s:t: � ðKðB;DT
� Þuþ þ e2bþÞ þ n1 P e2;�ðKðC;DT

� Þuþ þ e3bþÞ þ
g1 P e3ð1� �Þ; n1 � 0;g1 � 0

ð2Þ
and

min
u� ; b� ; n2 ;g2

1
2 kKðB;DT

� Þu� þ e2b�k2 þ c3eT1n2 þ c4eT3g2

s:t: ðKðA;DT
� Þu� þ e1b�Þ þ n2 P e1;

ðKðC;DT
� Þu� þ e3b�Þ þ g2 P e3ð1� �Þ; n2 � 0;g2 � 0;

ð3Þ

where ciði ¼ 1;2;3;4Þ are positive real penalty parameters,
eiði ¼ 1;2;3Þ are standard unit vectors of appropriate dimensions
and ni; giði ¼ 1;2Þ are slack variables.

By introducing the Lagrangian multipliers a � 0 and b � 0, and
using Karush–Kuhn–Tucker (K.K.T.) [18] necessary and sufficient
optimality conditions, the dual formulation of (2) and (3) are as
follows:

max
q

eT4q� 1
2q

TN1ðRTRÞ�1
NT

1q

s:t: 0 6 q 6 K1

ð4Þ

and

max
f

eT5f� 1
2 f

TN2ðSTSÞ�1
NT

2f

s:t: 0 6 f 6 K2;
ð5Þ

where R ¼ ½KðA; DT
� Þ e1�; S ¼ ½KðB; DT

� Þ e2� and M ¼ ½KðC; DT
� Þ e3�.

N1 ¼ ½S; M�;N2 ¼ ½R; M�;K1 ¼ ½c1e2; c2e3�;K2 ¼ ½c3e1; c4e3�; q ¼ ½a;b�;
f ¼ ½c; d�; e4 ¼ ½e2; e3ð1� �Þ� and e5 ¼ ½e1; e3ð1� �Þ�. The kernel gen-
erated surfaces in Eq. (1) can be obtained from the solution of QPPs
(4) and (5) as given below:

uþ
bþ

� �
¼ �½RTRþ dI��1½STaþMTb�

and

u�
b�

� �
¼ ½STSþ dI��1½RTcþMTr�;

where dIðd > 0Þ is a regularization term [40] used to avoid the ill-
conditioning of matrices RTR and STS. In Twin-KSVC class label of
new testing point x, determines by the following decision function
[44]

f ðxÞ ¼
�1; KðxT ;DT

� Þu� þ e2b� < 1� �

1; KðxT ;DT
� Þuþ þ e1bþ > �1þ �

0; otherwise:

8><
>: ð6Þ

In this way Twin-KSVC constructs kðk� 1Þ=2 classifiers for k-
classes. One of the focused classes acquire a vote for x, according
to the condition satisfied by it. Then x is assigned to the class,
which gets highest votes.

2.2. KNN-based weighted multi-class twin support vector machines
(KWMTSVM)

The data points in Twin-KSVC algorithm contributes the same
weights when constructing the hyperplanes. Due to this, the local
information of data points is omitted and inter-class information is
also not exploited. However, they have contrasting impact on the
hyperplanes. In KNN-based weighted multi-class twin support vec-
tor machines (KWMTSVM) algorithm [43], K-nearest neighbor
method [6] is used to obtain the information of intra-class and
inter-class, For each sample xk in class +1, define two sets:
Please cite this article as: M. Tanveer, A. Sharma and P. N. Suganthan, Least squ
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NebsðxkÞ and NebdðxkÞ, where NebsðxkÞ contains its K neighbors in
class v1, while NebdðxkÞ contains its K neighbors in class �1.

NebsðxkÞ ¼ fxjkj if xjk and xk belong to the same class;
0 6 j 6 m1g; ð7Þ

NebdðxkÞ ¼ fxjkj if xjk and xk belong to the different class;0

6 j 6 m2g; ð8Þ
where NebsðxkÞ represents a set of m1-nearest neighbors of xk in
class +1, and NebdðxkÞ represents a set of m2-nearest neighbors xk
in class �1. For two adjacent matrices of class +1, define Ms and
Md as follows [43]:

Ms;ij ¼
1; if xj 2 NebsðxiÞ or xi 2 NebsðxjÞ
0; otherwise

�
ð9Þ

and

Md;ij ¼
1; if xj 2 NebdðxiÞ or xi 2 NebdðxjÞ
0; otherwise:

�
ð10Þ

WhenMs;ij ¼ 1 orMd;ij ¼ 1 is an undirectional edge between two
points. To reduce the data points, redefine the weighed matrix Md;ij

as follows:

f j ¼
1; if 9 i; Md;ij – 0;
0; otherwise:

�
ð11Þ

The nonlinear KWMTSVM seeks for two kernel generated sur-
faces given in Eq. (1) and can be obtained by solving the following
pair of QPPs [43]:

min
uþ ;bþ ;n1 ;g1

1
2kD1ðKðA;DT

� Þuþ þ e1bþÞk2 þ c1eT2n1 þ c2eT3g1

s:t: � F1ðKðB;DT
� Þuþ þ e2bþÞþ n1 P Fv1 ;�H1ðKðC;DT

� Þuþ þ e3bþÞþ
g1 P ð1� �ÞHv ; n1 � 0;g1 � 0

ð12Þ
and

min
u� ; b� ; n2 ; g2

1
2 kðD2KðB;DT

� Þu� þ e2b�Þk2 þ c3eT1n2 þ c4eT3g2

s:t: F2ðKðA;DT
� Þu� þ e1b�Þ þ n2 P Fv2 ;

H2ðKðC;DT
� Þu� þ e3b�Þ þ g2 P ð1� �ÞHv ;

n2 � 0;g2 � 0;

ð13Þ

where F1 ¼ diagðf 1; f 2; . . . ; f ‘2 Þ;H1 ¼ diagðh1;h2; . . . ;h‘3 Þ; F2 ¼
diagðf 1; f 2; . . . ; f ‘1 Þ;H2 ¼ diagðh1;h2; . . . ;h‘3 Þ;D1 ¼ diagðd1;d2; . . . ;d‘1 Þ
and dj ¼

P‘1
i¼1Ms;ij. Fv1 denotes the vector of diagonal elements of F1,

similarly Fv2 and Hv are defined. By introducing the Lagrange mul-
tipliers a;b; c and r, the dual formulation of Eqs. (12) and (13) are as
follows:

max
q

eT4q� 1
2q

TMT
1ðRTD1RÞ�1

M1q

s:t: 0 6 q 6 K1;
ð14Þ

where M1 ¼ ½STF1 M
TH1� and e4 ¼ ½FT

1e2; ð1� �ÞHT
1e3�.

max
f

eT5f� 1
2 f

TMT
2ðSTD2SÞ�1

M2f

s:t: 0 6 f 6 K2;
ð15Þ

where M2 ¼ ½RTF2 M
TH2� and e5 ¼ ½FT

2e1; ð1� �ÞHT
2e3�. Once QPPs in

Eqs. (14) and (15) are resolved, we can obtain:

uþ
bþ

� �
¼ �ðRTD1Rþ dIÞ�1ðSTF1aþMTH1bÞ

and
ares KNN-based weighted multiclass twin SVM, Neurocomputing, https://
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u�
b�

� �
¼ ðSTD2Sþ dIÞ�1ðRTF2cþMTH2rÞ;

where dIðd > 0Þ is a regularization term used to avoid the ill-
conditioning of matrices RTD1R and STD2S. The decision function
of KWMTSVM is the same as the decision function of Twin-KSVC.

3. Proposed LS-KWMTSVM

Motivated by the works of [19,23,43], we propose a novel least
squares KNN-based weighted multi-class twin support vector
machines (LS-KWMTSVM). The proposed LS-KWMTSVM replaces
the inequality constraints with equality constraints and utilizes
the squared loss function instead of hinge loss function as in
Twin-KSVC and KWMTSVM. Similar to KWMTSVM, the proposed
LS-KWMTSVM also uses K-nearest neighbor graph approach to
exploit the intra-class and inter-class information, different weight
matrix Ms are given to training data points for the same class. The
proposed LS-KWMTSVM solves two system of linear equations
instead of solving QPPs in Twin-KSVC and KWMTSVM, which
makes the proposed LS-KWMTSVM extremely simple and fast.
The proposed algorithm does not require any special optimizer.
Similar to K-SVCR, Twin-KSVC and KWMTSVM, the proposed LS-
KWMTSVM appraise all the data samples into a ‘‘1-versus-1-ver
sus-rest” structure, so the proposed algorithm inaugurate ternary
outputs f�1; 0; þ1g which help to deal with imbalance datasets.

3.1. Linear LS-KWMTSVM

Let matrix A 2 R‘1�n represents the data points of class +1,
B 2 R‘2�n represents the data points of class �1 and C 2 R‘3�n rep-
resents the remaining data points which are labeled 0. To classify
the two focused classes, the linear LS-KWMTSVM tries to find
two non-parallel hyperplanes defined as follows:

fþðxÞ ¼ wT
þxþ bþ ¼ 0 and f�ðxÞ ¼ wT

�xþ b� ¼ 0; ð16Þ
where wþ; w� 2 Rn and bþ; b� 2 R. The linear LS-KWMTSVM assim-
ilate of the following pair of optimi pzionatroblems:

min
wþ ; bþ n1 ; g1

1
2 kD1ðAwþ þ e1bþÞk2 þ c1

2 kn1k2 þ c2
2 kg1k2

s:t: � F1ðBwþ þ e2bþÞ þ n1 ¼ Fv1 ;

�H1ðCwþ þ e3bþÞ þ g1 ¼ ð1� �ÞHv

ð17Þ

and

min
w� ;b� n2 ;g2

1
2kD2ðBw� þe2b�Þk2þ c3

2 kn2k2þ c4
2 kg2k2

s:t: F2ðAw� þe1b�Þþn2 ¼ Fv2 ;H2ðCw� þe3b�Þþg2 ¼ð1��ÞHv ;
ð18Þ

where D1; D2; H1; H2; F1; F2; Fv2 ; Fv1 and Hv are same as defined in
KWMTSVM. n1;g1; n2 and g2 are the slack variables. By substituting
the values of n1 and g1 into the QPP (17), we obtain:

inwþ ; bþ
1
2
kD1ðAwþ þ e1bþÞk2 þ c1

2
kFv1 þ F1ðBwþ þ e2bþÞk2

þ c2
2
kð1� �ÞHv þ H1ðCwþ þ e3bþÞk2: ð19Þ

Using the K.K.T. optimality conditions [18], we obtain:

ATDT
1D1ðAwþ þ e1bþÞ þ c1B

TFT
1ðFv1 þ F1ðBwþ þ e2bþÞÞ

þ c2C
THT

1ðð1� �ÞHv þ H1ðCwþ þ e3bþÞÞ ¼ 0 ð20Þ
and

eT1D
T
1D1ðAwþ þ e1bþÞ þ c1eT2F

T
1ðFv1 þ F1ðBwþ þ e2bþÞÞ

þ c2eT3H
T
1ðð1� �ÞHv þ H1ðCwþ þ e3bþÞÞ ¼ 0: ð21Þ
Please cite this article as: M. Tanveer, A. Sharma and P. N. Suganthan, Least squ
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Rearranging Eqs. (20) and (21) in matrix form and resolving for
wþ and bþ gives

AT

eT1

" #
DT

1D1½Ae1�
wþ
bþ

� �
þ c1

BT

eT2

" #
FT
1 Fv1 þ F1½Be2�

wþ
bþ

� �� �

þc2
CT

eT3

" #
HT

1 Hvð1� �Þ þ H1½Ce3�
wþ
bþ

� �� �
¼ 0 ð22Þ

HTDT
1D1Hzþ þ c1G

TFT
1½Fv1 þ F1Gzþ� þ c2T

THT
1½Hvð1� �Þ þ H1Tzþ�

¼ 0;

where H ¼ ½A e1�;G ¼ ½B e2�; T ¼ ½C e3� and zþ ¼ wþ
bþ

� �
.

wþ
bþ

� �
¼ �ðHTDT

1D1H þ c1G
TFT

1F1Gþ c2T
THT

1H1TÞ�1ðc1GTFT
1Fv1

þ c2T
THT

1Hvð1� �ÞÞ: ð23Þ
Similarly, the solution of (18) is given by:

w�
b�

� �
¼ ðGTDT

2D2Gþ c3H
TFT

2F2H þ c4T
THT

2H2TÞ�1ðc3HTFT
2Fv2

þ c4T
THT

2Hvð1� �ÞÞ: ð24Þ
The optimal hyperplanes of Eq. (16) are obtained. The proposed

LS-KWMTSVM gives the solution of classification problem with
just inverse of two matrices of smaller sizes rather than solving
two QPPs in KWMTSVM.

3.2. Nonlinear LS-KWMTSVM

In order to enhance the proposed linear LS-KWMTSVM to non-
linear LS-KWMTSVM, we scrutinize the following kernel generated
surfaces instead of hyperplanes:

KðxT ;DT
� Þuþ þ bþ ¼ 0 and KðxT ;DT

� Þu� þ b� ¼ 0; ð25Þ
where D� ¼ ½A; B; C�;uþ;u� 2 Rn and K is an appropriate kernel
function.

The nonlinear LS-KWMTSVM assimilate of the following pair of
optimization problems:

min
uþ ;bþ ;n1 ;g1

1
2kD1ðKðA;DT

� Þuþ þe1bþÞk2þ c1
2 kn1k2þ c2

2 kg1k2

s:t: �F1ðKðB;DT
� Þuþ þe2bþÞþn1 ¼ Fv1 ; �H1ðKðC;DT

� Þuþ
þ e3bþÞþg1 ¼ð1��ÞHv

ð26Þ

and

min
u� ; b� ; n2 ;g2

1
2 kD2ðKðB;DT

� Þu� þ e2b�Þk2 þ c3
2 kn2k2 þ c4

2 kg2k2

s:t: F2ðKðA;DT
� Þu� þ e1b�Þ þ n2 ¼ Fv2 ; H2ðKðC;DT

� Þu� þ e3b�Þ
þg2 ¼ ð1� �ÞHv : ð27Þ
Analogous to linear case, we obtain the solutions of Eqs. (26)

and (27) as follows:

uþ
bþ

� �
¼ �ðRTDT

1D1Rþ c1S
TFT

1F1Sþ c2M
THT

1H1MÞ�1ðc1STFT
1Fv1

þ c2M
THT

1Hvð1� �ÞÞ ð28Þ
and

u�
b�

� �
¼ ðSTDT

2D2Sþ c3R
TFT

2F2Rþ c4M
THT

2H2MÞ�1ðc3RTFT
2Fv2

þ c4M
THT

2Hvð1� �ÞÞ; ð29Þ
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where R ¼ ½KðA;DT
� Þ e1�; S ¼ ½KðB;DT

� Þ e2�;M ¼ ½KðC;DT
� Þ e3� and � is a

real positive parameter. We notice that for the solution of nonlinear
case, we require inverse of two matrices of size ð‘þ 1Þ � ð‘þ 1Þ. To
depreciate the computational cost, we use Sherman–Morrison–Wood
bury (SMW) [11] formula to replicate Eqs. (28) and (29)

uþ
bþ

� �
¼ � Z � ZðF1SÞT I

c1
þ ðF1SÞTZðF1SÞT

� ��1

F1SZ

 !

� c1S
TF1Fv1 þ c2M

THT
1Hvð1� �Þ

� �
; ð30Þ

u�
b�

� �
¼ F� � F�ðF2RÞT I

c3
þ ðF2RÞTF�ðF2RÞT

� ��1

F2RF�

 !

� c1R
TF2Fv2 þ c2M

THT
2Hvð1� �Þ

� �
; ð31Þ

where Z ¼ ðRTDT
1D1Rþ c2M

THT
1H1MÞ�1

and F� ¼ ðSTDT
2D2Sþ

c4M
THT

1H1MÞ�1
:

Again by using the SMW formula we obtain:

Z ¼ 1
c2

Y � YðF2RÞTðc2I þ F2RYðF2RÞTÞ
�1
F2RY

� �
;

F� ¼ 1
c4

Y� � Y�ðF1SÞTðc4I þ F1SY�ðF1SÞTÞ
�1
F1SY�

� �
;

where Y ¼ ðMTHT
1H1MÞ�1

and Y� ¼ ðMTHT
2H2MÞ�1

. To avoid the case
when Y and Y� are ill-conditioned, we add a regularization term dI,
where d > 0 then

Y ¼ 1
d
ðI � ðH1MÞTðdI þMTHT

1H1MÞ�1
H1MÞ: ð32Þ

Y� ¼ 1
d
ðI � ðH2MÞTðdI þMTHT

2H2MÞ�1
H2MÞ: ð33Þ

Advantage of SMW formula is to compute three inverse matri-
ces Z; F�; Y and Y� of smaller dimensions.

The decision function of the proposed LS-KWMTSVM is same as
the decision function (6) of Twin-KSVC [44].

The class label of new testing data point x is decided by majority
voting. For a new data sample, if inequality wT

þxþ e1bþ > �1þ � is
convinced, then a vote is acquire by positive (+1) class. On the con-
trary, if the inequality wT

�xþ e2b� < 1� � is satisfied, then a vote is
aggregated by negative (-1) class, and 0 vote acquire by other
classes. If the above in-equations are not fulfilled, we give a vote
�1 to positive and negative class, and rest class obtain zero vote.
Table 1
Imbalance ratio (IR) of datasets [1].

Dataset No. of samples No. of attributes

Iris 150 4
Teaching 151 5
Wine 178 13
Hayes 132 5
Glass 214 9
Lenses 24 4

Contraceptive 1473 9
Zoo 101 16

Cleveland 297 13
Tae 150 5

Seeds 210 7
Newthyroid 215 5

Car 1728 6
Balance 625 4
Ecoli 336 7

Vertebal 310 6
Soyabean 47 35

Dermatology 358 34
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Finally, we establish kðk� 1Þ=2 classifiers for k-classes and calcu-
late the total votes acquires by each class, then the testing data
sample xwill be nominated to the class that aggregates the highest
votes.
4. Algorithm analysis

The proposed LS-KWMTSVM algorithm seeks two non-parallel
hyperplanes by solving a system of linear equations.

� We give different weights to the data points of the focused class
+1 in Eq. (16) by using the KNN graph [45]. If a data sample in
the focused class +1 has more KNNs, then we give more weight
to it.

� Constraint Reduction: We introduce F1 ¼ diagðf 1; f 2; . . . ; f l2 Þ
where f i ¼ 1 or 0 in Eq. (16). Similarly,
H1 ¼ diagðh1;h2; . . . ;hl3 Þ where hi ¼ 1 or 0. If any data sample
of focused class associated to the KNN of another focused class
i.e., f i ¼ 1 or hi ¼ 1 otherwise the corresponding constraint is
redundant.

� The proposed algorithm exploits the local information of intra-
class and inter-class by using the KNN method and imbalance
problem is resolved by using the ‘‘1-versus-1-versus -rest”
approach.

� Computational Complexity: It is well known that computational
complexity of SVM is Oð‘3Þ [5] where ‘ is the number of data

points. Computational complexity of TSVM is Oð2� ð‘2Þ
3Þ

because TSVM solves two problems, each of which is roughly
equal size matrices of order ð‘2Þ.

In a 3-class classification problem, assume that each class have

approximately ‘=3 data points. The data points of 3rd class involved
twice in the constraints of the K-SVCR, thus there are 4‘

3 constraints.

Therefore, computational complexity of K-SVCR is Oð4‘3 Þ
3. In Twin-

KSVC, the data points of 3rd class are used only once hence compu-

tational complexity of Twin-KSVC is Oð2� ð2‘3 Þ
3Þ.

If LS-KWMTSVM has no redundant constraint then LS-
KWMTSVM has the identical construction as Twin-KSVC, so it have
the similar computational complexity. If LS-KWMTSVM have the
some redundant constraint then computational complexity of LS-

KWMTSVM is less than Oð16‘327 Þ. In LS-KWMTSVM, KNN- graph

needs ‘2ðlogð‘ÞÞ steps to compute the weight matrices for each data
No. of classes Imbalance ratio (IR)

3 2
4 2.08
3 1.5
3 1.7
6 8.44
3 5
3 1.89
7 19.2
5 2.09
3 2.06
3 2
3 4.84
4 24.04
3 5.88
5 71.5
3 12.75
4 11.52
6 16.9
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Table 2
Performance comparison of proposed LS-KWMTSVM with Twin-KSVC, LST-KSVC and KWMTSVM using Gaussian kernel.

Dataset Twin-KSVC LST-KSVC KWMTSVM LS-KWMTSVM

Accuracyð%Þðc1 ¼ c3; c2 ¼ c4;lÞ Time(s) Accuracyð%Þðc1 ¼ c3; c2 ¼ c4;lÞ Time(s) Accuracyð%Þðc1 ¼ c3; c2 ¼ c4;lÞ Time(s) Accuracyð%Þðc1 ¼ c3; c2 ¼ c4;lÞ Time(s)

Iris
ð150�4�3Þ

88:89
ð0:031;2;8Þ

0.31 86:66
ð8;0:031;0:5Þ

0:08 82:22
ð0:125;0:5;2;0:2Þ

0.33 88:89
ð8;0:031;0:25Þ

0.130

Teaching
ð151�5�3Þ

43:47
ð0:125;0:31;8Þ

0.30 60:86
ð32;8;0:062Þ

0:08 54:34
ð0:5;0:125;0:125Þ

0.34 58:69
ð8;2;0:0625Þ

0.132

Wine
ð178�13�3Þ

92:45
ð0:031;8;1024Þ

0.34 94:33
ð32;1;64Þ

0.09 92:45
ð2;0:031;1024Þ

0.36 93:33
ð32;1;128Þ

0.157

Hayes
ð132�5�3Þ

66:67
ð0:031;0:5;2Þ

0.30 76:19
ð32;0:031;1Þ

0.07 66:67
ð0:125;0:031;4Þ

0.31 76:19
ð32;0:031;1Þ

0.11

Glass
ð214�9�6Þ

57:97
ð0:031;1;16Þ

0.95 60
ð8;0:125;0:0625Þ

0.45 59:42
ð2;0:031;8Þ

1.14 65:21
ð32;0:125;0:125Þ

0.67

Lense
ð24�4�3Þ

75
ð0:031;0:031;16Þ

0.26 75
ð32;0:031;8Þ

0.04 75
ð0:031;0:031;16Þ

0.28 87:5
ð8;8;4Þ

0.07

Contraceptive
ð210�9�3Þ

40
ð32;32;1024Þ

0.41 32:30
ð2;2;2Þ

0.115 35
ð1;0:031;4Þ

0.43 40
ð2;0:031;1Þ

0.22

Zoo
ð100�16�7Þ

61:29
ð0:031;0:031;2Þ

0.66 93:54
ð0:031;0:5;2Þ

0.19 61:29
ð32;32;1024Þ

0.71 96:77
ð1;0:125;0:7Þ

0.37

Cleveland
ð297�13�5Þ

52:87
ð0:125;0:125;256Þ

1.11 50:57
ð32;0:031;2Þ

0.46 50:57
ð0:5;0:031;256Þ

1.22 55:17
ð8;0:031;8Þ

0.72

Tae
ð150�5�3Þ

44:44
ð0:5;0:5;0:5Þ

0.32 48:89
ð32;0:031;0:004Þ

0.08 53:33
ð0:125;8;0:125Þ

0.35 57:77
ð8;0:125;0:0078Þ

0.14

Seeds
ð210�7�3Þ

93:33
ð1;0:5;0:5Þ

0.38 93:33
ð32;0:125;1Þ

0.09 96:66
ð0:5;0:125;1Þ

0.42 93:33
ð32;0:031;4Þ

0.165

Newthyroid
ð215�5�3Þ

98:46
ð1;0:5;4Þ

0.36 95:384
ð0:125;8;0:125Þ

0.10 95:3
ð0:125;8;0:125Þ

0.44 96:38
ð2;0:031;0:125Þ

0.16

Car
ð1728�6�4Þ

73:37
ð0:031;0:031;2Þ

6.57 94:13
ð0:031;0:5;2Þ

0.37 92:15
ð32;32;1024Þ

7.71 94:13
ð1;0:125;0:7Þ

0.87

Balance
ð625�4�3Þ

92:85
ð32;32;1024Þ

2.12 96:55
ð2;2;2Þ

0.17 96:55
ð1;0:031;4Þ

3.02 97:17
ð2;0:031;1Þ

0.37

Ecoli
ð366�7�5Þ

88:57
ð0:031;0:031;16Þ

0.62 90:87
ð32;0:031;8Þ

0.12 90:87
ð0:031;0:031;16Þ

0.67 92:75
ð8;8;4Þ

0.20

Vertebral
ð310�6�3Þ

75:05
ð0:031;0:5;2Þ

0.57 70:87
ð32;0:031;1Þ

0.12 83:81
ð0:125;0:031;4Þ

0.64 82:42
ð32;0:031;1Þ

0.11

Soyabean
ð47�35�4Þ

100
ð0:031;2;8Þ

0.27 100
ð8;0:031;0:5Þ

0:06 100
ð0:125;0:5;2;0:2Þ

0.33 100
ð8;0:031;0:25Þ

0.09

Dermatology
ð358�34�6Þ

89:23
ð0:125;0:125;256Þ

0.63 92:23
ð32;0:031;2Þ

0.14 85:23
ð0:5;0:031;256Þ

0.67 92:23
ð8;0:031;8Þ

0.16
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point. Thus, total computational complexity is approximately

Oð16‘327 þ ‘2ðlogð‘ÞÞ.

5. Discussion on LS-KWMTSVM

In this section, we discuss the differences between Twin-KSVC,
KWMTSVM, LST-KSVC and the proposed LS-KWMTSVM.

5.1. LS-KWMTSVM vs. Twin-KSVC

Twin-KSVC and proposed LS-KWMTSVM employ ‘‘one-versus-
one-versus-rest” with ternary outputs f�1; 0; 1g, during the
decomposition phase both algorithms use a mixed classification
and regression support vector machines formulation and construct
kðk�1Þ

2 binary SVM classifiers.

� Twin-KSVC and proposed LS-KWMTSVM implemented with all
data points, training avoids the risk of information loss and class
distortion problem.

� In Twin-KSVC, data points contribute the same weight for the
construction of the hyperplanes, so that local information of
training samples is omitted, and inter-class information is not
exploited. While proposed LS-KWMTSVM, uses KNN graph
approach to utilize the intra-class and inter-class information,
different weight matrices are given to data points for the same
class.

� In the proposed LS-KWMTSVM, the solution of two primal prob-
lems is reduced to solving only two system of linear equations
whereas Twin-KSVC needs to solve two QPPs.

5.2. LS-KWMTSVM vs. KWMTSVM

� KWMTSVM and proposed LS-KWMTSVM both employ ‘‘one-ver
sus-one-versus-rest” with ternary outputs f�1; 0; 1g.

� KWMTSVM and proposed LS-KWMTSVM use K-nearest neigh-
bor graph to exploit the local information of the training sam-
ples and weight matrix D1;D2 are employed in the objective
function.

� Weight vectors Fv i
ði ¼ 1; 2Þ;Hv are introduced in constraints of

both algorithm. If any component of Fv i
;Hv is zero then it entail

that the consonant constraint is redundant.
� In the proposed LS-KWMTSVM, the solution of two primal prob-
lems is reduced to solving only two system of linear equations
whereas KWTSVM needs to solve two QPPs.

5.3. LS-KWMTSVM vs. LST-KSVC

� LST-KSVC and proposed LS-KWMTSVM solve two system of lin-
ear equation, which are used to obtain a pair of nonparallel opti-
mal hyperplanes for two focused classes.

� LST-KSVC and proposed LS-KWMTSVM both employ ‘‘one-ver
sus-one-versus-rest” with ternary outputs f�1; 0; 1g.

� Similar to Twin-KSVC, in LST-KSVC data points contribute the
same weight for the construction of the hyperplanes, so that
local information of training samples is omitted, and inter-
class information is not exploited. While proposed LS-
KWMTSVM, uses KNN graph approach to utilize the intra-
class and inter-class information, different weight matrices
are given to data points for the same class.

� From Eq. 17, we observe proposed LS-KWMTSVM requires
Please
doi.org
min
wþ ; bþ n1 ;g1

1
2 kD1ðAwþ þ e1bþÞk2 þ c1

2 kn1k2 þ c2
2 kg1k2

s:t:� F1ðBwþ þ e2bþÞ þ n1 ¼ Fv1 ;

�H1ðCwþ þ e3bþÞ þ g1 ¼ ð1� �ÞHv
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when D1; H1; F1, are identity matrix and Fv1 ;Hv are unit vectors,
above equation is recast into primal problem of LST-KSVC.

� LST-KSVC can be regarded as special case of LS-KWMTSVM.

6. Numerical experiments

Recently, imbalanced dataset [12] problem has appealed more
attention in the field of classification. Imbalance problem occurs
when significant irregularity between the probability distribution
of datasets in various classes. Most of the classifiers generally con-
fined on imbalanced datasets, which is due to the biased probabil-
ities distribution of the datasets in different classes, given by the
imbalance ratio (IR) [41].

We manifest the performance of four algorithms i.e.,
KWMTSVM [43], LST-KSVC [23], Twin KSVC [44] and the proposed
LS-KWMTSVM algorithm. We conduct experiments on eighteen
imbalance datasets taken from UCI machine learning repository
[22] and KEEL repository [1]. The class imbalance ratios are shown
in Table 1. The datasets are iris, zoo, wine, hayes-roth, glass, lenses,
contraceptive, teaching evaluation, cleave land, tae, seeds, newthy-
roid, car, balance, ecoli, vertebal, soyabean and dermatology. In
Table 2, total number of samples, attributes and number of classes
are denoted by sign ‘‘� � � � �” below the dataset name. For example
Iris dataset contains 150 samples and each sample consist of the
four attributes classified to three classes is denoted by
‘‘150� 4� 3”. We evaluate the performance of the proposed LS-
KWMTSVM on running time and classification accuracy aspects.
We use 10-fold cross-validation in our experiments to compare
the performance of the three algorithms. In 10-fold cross valida-
tion, the dataset is randomly split into ten subsets, nine of them
are used for training and one is used for testing. This process is
repeated ten times and performance measure is taken as the aver-
age of ten tested results. These four algorithms are implemented in

MATLAB 2010b. Gaussian kernel function Kðx; yÞ ¼ exp�ðkx�yk2=l2Þ is
considered as it is often applied and yields great generalization
performance, where l is a parameter.
6.1. Parameter selection

It is clear that the performance of the algorithms depend on the
choices of parameters. In our experiments, optimal parameters are
obtained by the grid search method [13]. For all algorithms, pen-
alty parameters ciði ¼ 1; 2; 3; 4Þ are selected from the set

f2j j j ¼ �5;�4; � � � ;4;5g. The Gaussian kernel parameter l is

elected over the range f2j j j ¼ �10;�9; � � � ;9;10g. Parameter � is
prescribed to a small value 0.2. To scale down the computational
cost of parameter selection, we prescribed c1 ¼ c3 and c2 ¼ c4 for
all algorithms.
6.2. Result comparison and discussion

We compare the proposed LS-KWMTSVM with Twin-KSVC [44],
LST-KSVC[23] and KWMTSVM [45]. Table 2 illustrate the experi-
mental results. We scrutinize that the proposed LS-KWMTSVM
outperforms on most of the datasets in the perspective of predic-
tion accuracy. In the proposed algorithm, we solve the system of
linear equations which makes the computation speed fast.
Fig. (a) manifests the impact of penalty parameters ðc1; c2Þ on the
performance of LS-KWMTSVM with the optimal value of kernel
parameter for the dataset Iris.
ares KNN-based weighted multiclass twin SVM, Neurocomputing, https://
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Table 3
Average rank on accuracy of four algorithms on twelve benchmark datasets.

Dataset Twin-KSVC LST-KSVC KWMTSVM LS- KWMTSVM

Iris 1.5 3 4 1.5
Teaching 4 1 3 2
Wine 3.5 1 3.5 2
Hayes 3.5 1.5 3.5 1.5
Glass 4 2 3 1
Lenses 3 3 3 1
Contraceptive 1.5 4 3 1.5
Zoo 3.5 2 3.5 1
Cleveland 2 3.5 3.5 1
Tae 4 3 2 1
Seeds 3 3 1 3
Newthyroid 1 3 4 2
Car good 4 1.5 3 1.5
Balance 4 2.5 2.5 1
Ecoli 4 2.5 2.5 1
Vertebral 3 4 1 2
Soyabean 2.5 2.5 2.5 2.5
Dermatology 3 1 4 2
Average Rank 3.05 2.44 2.91 1.58
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One can observe from Fig. (a) that c1 has more impact on the
predictive accuracy of the proposed LS-KWMTSVM as compared
to c2. As value of c1 increase accuracy also increase linearly.
Fig. (b) manifests the impact of penalty parameters ðc1; c2Þ on
the performance of LS-KWMTSVM with the optimal value of ker-
nel parameter for Teaching dataset. It is observed from Fig. (b)
that variation in the value of c1 and c2 does not much effect
the variation of predictive accuracy. Predicative accuracy of pro-
posed algorithm is approximately constant. Fig. (c) manifests
the impact of penalty parameters ðc1; c2Þ on the performance of
LS-KWMTSVM with the optimal value of kernel parameter for
Wine dataset. Fig. (c) manifests that c1 have more impact on
the predictive accuracy as compared to c2. For large value of c1,
the performance of LS-KWMTSVM suddenly degrades.

6.3. Statistical analysis

To analyze the statistical implication of the proposed LS-
KWMTSVM in contrast to Twin-KSVC [44], LST-KSVC [23] and
KWMTSVM [45], we use Friedman test with corresponding post
hoc tests [9,10] for the 4 algorithms and 18 benchmark datasets.
Friedman test is considered to be simple, robust, non-parametric
and safe test for comparison of different classifiers over multiple
datasets. It ranks the algorithm for each dataset separately, the
best performing algorithm getting the rank 1, second one is ranked
2 and so on. In the case of ties, average ranks are assigned. Table 3
expose the average rank of algorithms on accuracy with Gaussian
kernel function.

Under the null hypothesis, the Friedman statistics is distributed
according to X2

F with ðt � 1Þ degree of freedom as follows: [9]:

X2
F ¼ 12N

tðt þ 1Þ
X
j

R2
j �

tðt þ 1Þ2
4

" #
;

FF ¼ ðN � 1ÞX2
F

Nðt � 1Þ �X2
F

;

X2
F ¼ 12� 18

4ð4þ 1Þ 3:052 þ 2:442 þ 2:912 þ 1:582 � 4� 52

4

" #
¼ 13:18:;

FF ¼ ð18� 1Þ � 13:18
18� ð4� 1Þ � 13:18

¼ 5:48;
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The rank of jth algorithm on the ith dataset is denoted by rji out of

N datasets, where Rj ¼ 1
N

P
jr

j
i. FF is the F-distribution with

ðt � 1ÞðN � 1Þ ¼ ð4� 1; ð4� 1Þ � ð18� 1ÞÞ ¼ ð3;51Þ degrees of
freedom, where t is the number of algorithms and N number of
datasets. The critical values of F(3, 51) at significance level
a ¼ ð0:025; 0:05; 0:1) are 3.38, 2.78 and 2.19 respectively. Since
FF value 5.48 of the proposed algorithm is larger than the critical
values i.e, the average rank of the proposed algorithm is much
lower than other algorithms. One can conclude that the proposed
algorithm LS-KWMTSVM is significantly better than Twin-KSVC,
LST-KSVC and KWMTSVM.
7. Conclusion

In this paper, a novel least squares KNN-based weighted
multi-class twin support vector machine (LS-KWMTSVM) is pro-
posed by adopting the equality constraints instead of inequality
constraints and minimized the slack variables using squares of
2-norm instead of conventional 1-norm. This simple modification
leads to a very fast algorithm with much better results. The
modified primal problems in the proposed LS-KWMTSVM solves
only two systems of linear equations whereas two QPPs need to
solve in KWMTSVM. The proposed LS-KWMTSVM, equivalent to
the KWMTSVM, employed the weight matrix in the objective
function to exploit the local information of the training samples.
To exploit the inter class information, we use weight vectors in
the constraints of the proposed LS-KWMTSVM. If any component
of vectors is zero then the corresponding constraint is redundant
and thus we can avoid it. Elimination of redundant constraints
and solving a system of linear equations instead of QPPs makes
the proposed LS-KWMTSVM more robust and faster than
KWMTSVM. The proposed LS-KWMTSVM, equivalent to the
KWMTSVM, appraise all the training data points into a ‘‘1-ver
sus-1-versus-rest” structure, and thus the proposed LS-
KWMTSVM inaugurate ternary output f�1;0;þ1g which helps
to deal with imbalance datasets. Numerical experiments on sev-
eral UCI benchmark datasets clearly indicate that the proposed
LS-KWMTSVM has better accuracy in classification to that of
KWMTSVM but with remarkably less computational time. It
should be pointed out that there are several parameters in the
proposed LS-KWMTSVM, so parameter selection is an important
problem and need to address in future.
ares KNN-based weighted multiclass twin SVM, Neurocomputing, https://
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