केंद्रीय विद्यालय, बेंगलुरु संभाग KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री-बोर्ड परीक्षा २०२४-२५

FIRST PRE-BOARD EXAMINATION (2024-25)

MARKING SCHEME

CLASS: X
SUBJECT: MATHEMATICS (STANDARD -041)

MAX MARKS: 80
TIME: 3 hrs.

Note: Any alternative methods to be awarded equal marks.

Q	SECTION - A	Marks
No		
1	(b) both negative	1
2	(b) inconsistent	1
3	(c) 126°	1
4	(c)√162	1
5	(d) 16:9	1
6	(b) 17/12	1
7	(a) 5	1
8	(b) 2	1
9	(b) 30-40	1
10	(a) 30°	1
11	(c) real and distinct	1
12	(b) 3/2	1
13	$(c) \frac{1}{3} \pi r^2 (2r + h) \text{ cm}^3$	1
14	(c) 7/17	1
15	(a) -12	1
16	(d) 7.51	1
17	(a) 9	1
18	(d)1/7	1
19	(a)	1
20	(b)	1
	SECTION -B	
21	$96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$	1
	$404 = 2 \times 2 \times 101$	
	HCF = 4	0.5
	LCM = 9696	0.5
	OR 115) 12	1
	HCF(65,117) = 13	1
	ATQ $65m - 117 = 13$ m = 2	1
22	$(i)\frac{5}{17}$ $(ii)\frac{13}{17}$	1+1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

	OR	
	122 31 5	1 . 1
	$\frac{122}{144} = \frac{31}{36}$ (ii) $\frac{5}{36}$	1+1
23		
	Substituting correct values	
	$\cos 60^\circ = \frac{1}{2}$, $\sec 30^\circ = \frac{2}{\sqrt{3}}$, $\tan 45^\circ = 1$, $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$	1
	Simplification	
	correct answer:	
	67	
	12	1
24	Let point on x-axis be $P(a, 0)$ and given that $A(2, -5)$ and $B(-2, 9)$ are	
	equidistant	
	PA = PB Squaring both sides,	1
	we get $a^2 + 4 - 4a + 25 = a^2 + 4 + 4a + 81$	
	$\begin{vmatrix} -8a = 56 \\ a = -7 \end{vmatrix}$	
	Hence the required point is (-7, 0)	1
25	Let the coordinates of B be (x,y)	
	3× x+8 1 2 2 1 0 7 2 2 5	1
	$\frac{3 \times x + 8}{7} = -1 \Rightarrow 3x + 8 = -7 \Rightarrow x = -5$	
	$3 \times y + 20$	
	$\frac{3 \times y + 20}{7} = 2 \Rightarrow 3y + 20 = 14 \Rightarrow y = -2$	1
	Coordinates of B are (-5,-2)	1
	0001411111100 01 2 1110 (0, 2)	
	SECTION - C	
26	In \triangle ABD and \triangle PQR	
	AB/PQ = BD/QR = AC/PM [given] AB/PQ = 2BC/2QM/AC/PM	
	$\Rightarrow AB/PQ = (BC/QM = AC/PM)$	1
	$\Delta ABC \sim \Delta PQM$ (SSS Criteria)	
	$(\angle ABC = \angle PQM$	
	$Or \angle ABD = \angle PQR$	1
	Now, in $\triangle ABD$ and $\triangle PQR$ AB/PQ = BD/QR	1
	$\angle ABD = \angle PQR$ (Proved)	1
	$\Rightarrow \Delta ABC \sim \Delta PQR [SAS criterion]$	
	OB	
	OR	
	In $\triangle ABC$ and $\triangle ADE$	
	$\angle C = \angle E = 90^{\circ} [each]$	
	$\angle A = \angle A$ (Common angle)	1
	$\Delta ABC \sim \Delta ADE$ (By AA similarity)	

	In $\triangle ABC$, $AB^2 = AC^2 + BC^2$ (By Pythagoras theorem)	1/2
	$AB^2 = 25 + 144 = 169$	1 /2
	AB = 13cm $AB = BC AC$	1/2
	$\begin{vmatrix} \frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE} \\ \frac{13}{3} = \frac{12}{DE} = \frac{5}{AE} \Rightarrow DE = \frac{36}{13} \text{ and } AE = 15/13$	
	$\frac{1}{3} = \frac{1}{DE} = \frac{1}{AE} \implies DE = \frac{1}{13} ana AE = 15/13$	1
27	Let one number be x and another number $(34 - x)$	
	ATQ $(x-3)(34-x+2) = 260$	1
	Solving and getting the quadratic equation $x^2 - 39x + 368 = 0$	
	(x - 16)(x - 23) = 0	1
	$\Rightarrow x = 16,23$	
	If one number is 16, then another number = $34 - 16 = 18$ If one number is 23, then another number = $34 - 23 = 11$	1
	if the number is 23, then another number – 37 – 23 –11	
28	$6y^2 - 7y + 2$	
	7	
	$\alpha + \beta = \frac{7}{6}$	
	$\alpha\beta = \frac{2}{6} = \frac{1}{3}$	1
	0 3	
	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{7}{2}$	
	α β $\alpha\beta$ 2	
	1 1 1	
	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = 3$	1
	Quadratic polynomial is	
	Quadratic polynomial is	
	$y^2 - \frac{7}{2}y + 3$ or $2y^2 - 7y + 6$	1
29	2	
	$R.H.S. = x^2 + y^2$ $= (a \cos \theta - b \sin \theta)^2 + (a \sin \theta + b \cos \theta)^2$	
	$= a^2\cos^2\theta + b^2\sin^2\theta - 2ab\cos\theta\sin\theta + a^2\sin^2\theta + b^2\cos^2\theta + 2ab\sin\theta$	1
	$\cos \theta$	1
	$\begin{vmatrix} = a^{2}(\cos^{2}\theta + \sin^{2}\theta) + b^{2}(\sin^{2}\theta + \cos^{2}\theta) \\ = a^{2} + b^{2} = L.H.S [\because \cos^{2}\theta + \sin^{2}\theta = 1 \end{vmatrix}$	
		1
30	Area of sector = $\theta/360 \times \pi r^2$	
	Area of the segment = Area of the sector - Area of the corresponding Δ	
	Here, radius, $r = 15$ cm, $\theta = 60^{\circ}$	
	AB is the chord that subtends 60° angle at the	

Area of the sector =
$$\theta/360^{\circ} \times \pi r^2$$

= $60^{\circ}/360^{\circ} \times 3.14 \times 15 \times 15 \text{ cm}^2$
= 117.75 cm^2

1

In $\triangle AOB$,

$$OA = OB = r$$

 $\angle OBA = \angle OAB$ (Angles opposite to the equal sides in a triangle are equal)

$$\angle AOB + \angle OBA + \angle OAB = 180^{\circ}$$

$$60^{\circ} + \angle OAB + \angle OAB = 180^{\circ}$$

$$2 \angle OAB = 120^{\circ}$$

$$\angle OAB = 60^{\circ}$$

 \therefore \triangle AOB is a because all its angles are equal.

$$\Rightarrow$$
 AB = OA = OB = r

Area of $\triangle AOB = \sqrt{3/4} \times (side)^2$

$$=\sqrt{3/4} r^2$$

$$= \sqrt{3/4} \times (15 \text{ cm})^2$$

$$= 1.73/4 \times 225 \text{ cm}^2$$

$$= 97.3125 \text{ cm}^2$$

(i) Area of minor segment APB = Area of sector - Area of Δ

$$= 117.75 \text{ cm}^2 - 97.3125 \text{ cm}^2$$

$$= 20.4375 \text{ cm}^2$$

1

1.5

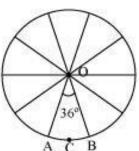
OR

Total length of wire required will be the length of 5 diameters and the circumference of the brooch.

$$\frac{35}{2}$$
 mm

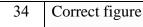
Radius of circle = 2

Circumference of brooch = $2\pi r$

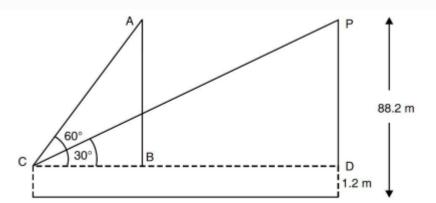

$$=2\times\frac{22}{7}\times\left(\frac{35}{2}\right)$$

= 110 mm

Length of wire required = $110 + 5 \times 35$


$$= 110 + 175 = 285 \text{ mm}$$

It can be observed from the figure that each of 10 sectors of the circle is subtending 36° at the centre of the circle.



Therefore, area of each sector = $\frac{36^{\circ}}{360^{\circ}} \times \pi r^{3}$

	$= \frac{1}{10} \times \frac{22}{7} \times \left(\frac{35}{2}\right) \times \left(\frac{35}{2}\right)$	1.5	
	$=\frac{385}{4} \text{ mm}^2$		
	4		
31	Let $\sqrt{5}$ be a rational number, then we have $\sqrt{5} = \frac{p}{a}$, where p and q are co-		
	primes.	1	
	$\Rightarrow p = \sqrt{5q}$		
	Squaring both sides, we get $p^2 = 5q^2$ $\Rightarrow p^{172}$ is divisible by $5 \Rightarrow p$ is also divisible by 5		
	So, assume $p = 5m$ where m is any integer.		
	Squaring both sides, we get $p^2 = 25m^2$		
	But $p^2 = 5q^2$ Therefore, $5q^2 = 25m^2 \Rightarrow q^2 = 5m^2$	1	
	$\Rightarrow q^2$ is divisible by $5 \Rightarrow q$ is also divisible by $5 \Rightarrow q$		
	From above we conclude that p and q have one common factor i.e. 5 which		
	contradicts that p and q are co-primes. Therefore, our assumption is wrong.		
	Hence, $\sqrt{5}$ is an irrational number.		
	SECTION D	1	
32	SECTION - D Correct graph of equation		
	x + 3y = 6		
	Correct graph of equation $2x - 3y = 12$	1.5	
	Substituting $x = 6$ and $y=0$ and finding value of	1.5	
	a = 24	1	
	OR Let length of rectangle = x units	1	
	And breadth of rectangle = y units		
	∴ Area of rectangle xy sq. units According to 1 st condition	1	
	According to 1 condition $(x-5)(y+3) = xy-9$	1	
	Or $3x - 5y = 6$ (i)		
	According to 2^{nd} condition $(x+3)(y+2) = xy + 67$	1	
	Or 2x + 3y = 61(ii)		
	Solving eq (i) and (ii)	1	
	X = 17 and $y = 9Length = 17 units and Breadth = 9 units$	1	
		1	
33	Figure	2	
	Given, To Prove, Construction	2	
	Proof Solving for EC = 9 cm	2	
		1	

In the figure, let C be the position of the observer (the girl). A and P are two positions of the balloon. CD is the horizontal line from the eyes of the (observer) girl. Here PD = AB = 88.2 m - 1.2 m = 87 m

In rt
$$\triangle ABC$$
, $\frac{AB}{BC} = \tan 60^{\circ}$

In rt
$$\triangle PDC$$
, $\frac{PD}{CD} = \tan 30^{\circ}$

1

1

1

1

1

1

1

$$\frac{87}{BC} = \sqrt{3}$$

$$\frac{87}{CD} = \frac{1}{\sqrt{3}}$$

$$BC = \frac{87}{\sqrt{3}}$$

$$CD = 87\sqrt{3}$$

BD = CD - CB =
$$87\sqrt{3} - \frac{87}{\sqrt{3}} = 58\sqrt{3} = 58 \times 1.732 = 100.46 \text{ m}$$

Hence distance travelled by the balloon is 100.46m

35	Finding correct cf column
	y + y + 61 - 100

$$x + y +61 = 100$$

$$\Rightarrow$$
 x + y = 39

Given data,
$$n = 100 \Rightarrow \frac{n}{2} = 50$$

$$Median = 868$$

$$cf = 21 + x$$

Lower Limit (1) = 860
$$f = 25$$
 and $h = 20$

1 = 25 and h = 20
Median =
$$1 + (\frac{n}{2} - cf) \times h$$

Substituting the values and getting x = 19

Also
$$x + y = 39$$

substituting the value of x and getting y = 20

Hence x = 19 and y = 20

OR

	T 1 10		1	
	Below 40 3			
	40-42 2		1	
	42-44 4			
	44-46 5		1	
	46-48	1		
	48-50 3			
	50-52 4			
	Maximum frequency is 14, Modal class is 46-48			
	Lower limit (1) = 46, $f_1 = 14$, $f_0 = 5$, $f_2 = 3$ h = 2			
	$f_1 - f_0$			
	$Mode = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$			
	Substituting the given values in the above formula and getting answer			
	=46.9 kg			
	SECTION - E			
36	(a) 133			
	(b) 128		1	
	(c) 1365 OR 952		1	
	(c) 1303 OK 732		2	
37	(a) 150°		1	
	(b) 75°.			
	(c) 75° OR 180°		1	
			2	
38	(i) $15cm \times 10cm \times 3.5cm = 525cm^3$			
	(ii) $\frac{1}{3} \times \frac{22}{7} \times 0.5 \times 0.5 \times 1.4 = 0.3$			
	(iii) $525-1.48 = 523.52cm^3(app)$			
	[OR]			
	TSA = 2(lb + bh + hl)			
	$= 2(15 \times 10 + 10 \times 3.5 + 15 \times 3.5)$ $= 475cm^{2}$			
	-4/3cm			