FIRST PRE-BOARD EXAMINATION - 2024-2025

SUBJECT: PHYSICS

Class: XII Maximum Marks: 70

MARKING SCHEME

1.	(b) $\frac{q\lambda}{2\pi\epsilon_0 r}$	1
2	(b) Decreases	1
3	(d) Equidistant Planes normal to electric field.	1
4	(c) the resistance will be halved and the specific resistance will remain unchanged	1
5	(b) Straight and parallel	1
6	(c) the charge carriers are electrons and holes in the valence band at higher temperatures	1
7	(b) 1-S, 2-P, 3- Q, 4-R	1
8	(a)Concave lens	1
9	(d) – 3.75 D	1
10	(c)4:1	1
11	(a) decrease with increase of work function	1
12	(a) 3.6×10^{-15} m	1
13	c	1
14	a	1
15	b	1
16	a	1
	SECTION B	
17	Diagram ¹ / ₂ Derivation 1.5M	2
18	Definition.(1/2) Derivation (1.5 M) OR Definition- ¹ / ₂ M Derivation 1.5 M	2

19	A current-carrying solenoid behaves like a bar magnet because a magnetic	2
	field develops along its axis, i.e., along with its length.(1)	
	The magnetic moment associated with the given current-carrying solenoid	
	is calculated as:	
	M = N I A	
	=800×3×2.5×10-4	
	=0.6 J/T(1)	
20	Second excited state : n=3	2
	$E_{n=\frac{-13\cdot6}{n^2}}$ eV. (0.5 M)	
	Energy in n=3 quantum state = -1.51 eV . (0.5M)	
	E=-1.51 - (-13.6) (0.5M)	
	=12.09 eV (0.5M)	
21	Diffusion and Drift ($\frac{1}{2}M + \frac{1}{2}M$)	2
	Explanation of formation of barrier – 1M SECTION -C	
22	Definitions $-1/2M + \frac{1}{2}M$	3
	atomic mass $M(H)$ of hydrogen and nuclear mass (M_n) are	
	$M(H)=1.007825u$ and $M_n=1.008665u$	
	Mass defect	
	$\Delta m = [M(H) + M_n - M(D)]; M(D) = 2.016490u - 2.014102u = 0.002388u$	
	As $1u$ corresponds to $931.494 MeV$ energy, therefore, mass defect	
	corresponds to energy	
	$E_b = 0.002388 imes 931.5 = 2.224 MeV$ 2M	

23	↑	3
	$v_1 > v_2$ $v_1 > v_2$ Saturated current v_1 v_2 $-Vo_1$ $-Vo_2$ Collector plate potential (anode potential) graph- 1M	
	The photoelectric equation in terms of stopping potential V0 is given by $eV_0 = hv - hv_0$ So, $V_0 \propto v - 1M$ for explanation Thus, Stopping potential will be higher for v_1 . – 1M	
24	Ray diagram-1Mark	3
	working of a reflecting telescope-1	
	two advantages of a reflecting telescope over a refracting telescope-1	
	OR	
	Ray diagram-1Mark	
	Derivation -2Marks	
25	Diagram-0.5 M Derivation -1.5 M Definition of 1Ampere -1 M	3
26	(i) When switch S is closed : $Q_1 = Q_2 = 10 \ \mu\text{C}$ (before dielectric slab) When Switch is opened and dielectric is introduced, $Q_1 = KC_1 \ V = 50 \ \mu\text{C}$ (increases 5 times), (½ M) $Q_2 = KC_2 \frac{V}{K} = 10 \ \mu\text{C}$ (remains same) (½ M) (ii) P.d. across C ₁ is still 5V (½ M) and across C ₂ will become	3
	$V' = \frac{V}{5} = \frac{5}{5} = 1V$ (iii) Initially (when the switch is closed) both will store same amount energy. (U ₀)	

	After the dielectric is introduced : $U_1 = KU_0$ $U_2 = U_0 / K (1/2 M)$ $\frac{U_1}{U_2} = K^2 : 1 = 25:1 (1/2 M)$	
27	(a) yes. While charging 1M (b) numerical- 2M $I = \frac{E}{R+r}$ $0.5 = \frac{10}{R+3}$ $R + 3 = 20$ $R = 17 \Omega$ Terminal voltage of the battery $V = E - Ir$ $V = 10 - 0.5 \times 3 = 8.5 V$ OR i) statements (½ M each). ii) Diagram - ½ M & derivation - 1.5 M	3
28	Rectifier circuit diagram-1M Working-1M	3
	Input and Output Wave forms-1M SECTION - D	
29	1) c 2)d 3)a 4) c OR 4) c	4
30	1)d 2)b 3)b 4) d OR 4) d	4
31	Definition of Electric Dipole moment- 0.5 M Diagram (0.5M) & Derivation-2 M	5

	Let at point P the electric field is zero.	
	$ \begin{array}{c} & {\leftarrow} \stackrel{2m}{P} \\ \bullet & {\leftarrow} {\leftarrow} {\rightarrow} E_1 \\ 5\mu c & E_2 \\ \end{array} \begin{array}{c} \bullet \\ 20\mu c \end{array} $	
	$+x - \rightarrow +2 - x \rightarrow +$	
	\Rightarrow $E_1 - E_2 = 0$	
	$\Rightarrow \frac{1}{4\pi \in_0} \frac{q_1}{x^2} - \frac{1}{4\pi \in_0} \frac{q_2}{(2-x)^2}$	
	$\Rightarrow \frac{q_1}{q_2} = \left(\frac{x}{2-x}\right)^2$	
	$\Rightarrow \frac{5 \times 10^{-6}}{20 \times 10^{-6}} = \left(\frac{x}{2-x}\right)^2$	
	$\Rightarrow \frac{x}{2-x} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	
	$\Rightarrow 2x = 2 - x$ $\Rightarrow 3x = 2$	
	$\Rightarrow x = \frac{2}{3}m \text{ from 5 } \mu c \qquad (2 \text{ M for numerical})$	
	OR	
	a) Diagram (0.5M) & Derivation-2.5 M	
	b) Let us assume that the given square be one face of the cube of edge 10 cm. As charge of $\pm 10 \ \mu$ C is at a distance of 5 cm above the centre of a	
	square, so it is enclosed by the cube. Hence by Gauss's theorem, electric	
	flux linked with the cube is	
	$\phi = \frac{q}{\varepsilon_0} = \frac{10 \times 10^{-6}}{8.85 \times 10^{-12}} = 1.13 \times 10^6 \text{ N m}^2 \text{ C}^{-1}$	
	So, the magnitude of the electric flux through 60×10^{-12}	
	the square is	
	$\phi_{sq} = \frac{\phi}{6} = \frac{1.13}{6} \times 10^6 \text{ or } \phi_{sq} = 1.9 \times 10^5 \text{ N m}^2 \text{ C}^{-1} $ (2)	
	(-)	
32	(I) (a)TRANSFORMER Diagram-0.5 M	(5
	Principle: 0.5 M	Marks
	Working: 2M)
	 (b) The two sources of energy losses are eddy current losses and flux leakage losses. (any two) 1M 	
	(c)There is no violation of the principle of the conservation of energy in a step-up	
	transformer. When output voltage increases the output current decreases	
	automatically keeping the power the same.1M	

	OR	
	Determination of source frequency -1 M Obtaining impedance & amplitude – 1M+1 M Determining RMS drop - 0.5 M for each drop (across L, C, R, and LC) (total 2 M) (Refer NCERT)	
33	2- Conditions-0.5 M each – (1Mark)	5
	Relation between Critical angle and Ref.Index-1 Mark	
	2 applications – 1M.	
	Numerical – correct answer (2M) We know $\sin C = \frac{1}{a_{\mu_{w}}}$ $C = \sin^{-1}\left(\frac{1}{a_{\mu_{w}}}\right)$ $C = \sin^{-1}\left(\frac{1}{1.33}\right) \Rightarrow \sin C = \frac{1}{1.33} = \frac{3}{4}$ $\tan C = \frac{R}{OP}(\text{radius}) \qquad [\because (0.80)^{2} = 0.6400]$ $R = \tan C \times OP = \tan C (0.80)$ $\text{Area} = \pi R^{2} = \pi \times \tan^{2}C (0.64)$ $A = \pi(0.64) + \tan^{2}C$	
	$= \pi(0.64) \times \frac{\sin^2 C}{\cos^2 C} = \pi(0.64) \times \frac{\sin^2 C}{1 - \sin^2 C}$ $= \pi(0.64) \times \frac{9}{16} = \pi(0.64) \times \frac{9}{16} \times \frac{16}{7}$	
	$=\frac{22}{7} \times 0.64 \times \frac{9}{7} = 2.6 \text{ m}^2$	
	OR	
	Diagram-0.5 Mark Proving Prism Formula-2.5M	
	Tracing the Path of light ray -1Mark in each case	
	C is critical angle.	
	Sin C=1/1.5=2/3=0.66	
	$C=41.8^{\circ}$	
	When Ref.Index-=1.5, TIR Take place	
	When Ref.Index-=1.4, TIR will not take place. here critical angle =45.9 [°]	
	For solution : Any other relevant method may be adopted.	