केंद्रीय विद्यालय, बेंगलुरु संभाग KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री-बोर्ड परीक्षा २०२४-२७

FIRST PRE-BOARD EXAMINATION (2024-25)

CLASS : X SUBJECT: MATHEMATICS (BASIC) CODE : 241

MAX MARKS :80 TIME : 3 hrs.

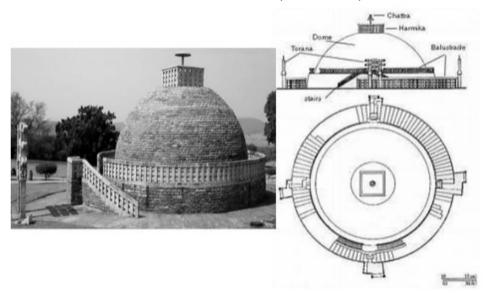
General Instructions:

Read the following instructions carefully and follow them:

- **1.** This question paper contains 38 questions.
- **2.** This Question Paper is divided into 5 Sections A, B, C, D and E.
- **3.** In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19 and 20 are Assertion- Reason based questions of 1 mark each.
- **4.** In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
- **5.** In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- **6.** In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- **7.** In Section E, Questions no. 36-38 are case study-based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- **8.** All Questions are compulsory. However, an internal choice in 2 Questions of section B, 2 Questions of section C and 2 Questions of section D has been provided. And internal choice has been provided in all the 2 marks questions of Section E.

		S	SECTION A		
1.	If a = $x^1y^2z^2$, b= $x^2 y^2 z^3$, and c= x^n	$y^1 z^5$ and the LCM (a,b,	c) = $x^3 y^2 z^5$ then the value	; 1
	of n is:				
	a) 3	b) 2	c) 5	d) 1	
2	The sector of	1:	4 - 1 1 4 - 1 ·		1
2.	•	linear equations represen	·		1
	a) consistent v	with unique solution	b) inconsistent		
	c) consistent v	with three solutions	d) consistent w	ith many solutions	
3.	The value of k	for which the quadratic	equation $kx^2 - 4x + 3 =$	0 has real and equal roots	, 1
	is				
	a) 0	b) $\frac{3}{4}$	c) $\frac{4}{3}$	d) 9	
	,	· 4	/ 3	,	
4.	The distance b	etween the point (-4, 3) a	nd the origin is		1
	a) 6	b) 5	c) 4	d) 3	

5.	In figure, on a circle of radius 7 cm, tangent PT is drawn from a point P such that $PT = 24$ cm. If O is the centre of the circle, then the length									
	PT = 24 cm. If C of PR is) is the centre of the	circle, then the length							
				O R						
	a)28cm		b)25cm							
	c) 32cm		d) 30cm	T						
6.	If in two triangle	es ABC and DEF suc	h that $\frac{AB}{DF} = \frac{BC}{FE} = \frac{CA}{ED}$, then	n	1					
	a) $\Delta ABC \sim \Delta DE$	EF	b) $\Delta ABC \sim \Delta EI$	DF						
	c) $\triangle ABC \sim \triangle EF$	D	d) $\Delta ABC \sim \Delta D$	FE						
7.		n LCM and HCF of t	he least composite num	ber and the least prime number	1					
	is:	h) 2.1	a) 2.2	d) 1.7						
	a) 1: 3	b) 2:1	c) 3:2	d) 1:2						
8.	If the numbers n	-2, 4n - 1 and $5n +$	2 are in AP, then the va	alue of n is	1					
	a)1	b) 2	c) 3	d) 4						
9.	If two tangents	inclined at an angle	of 60° are drawn to a	circle of radius 3cm, then the	1					
).	length of each ta	-	of 00° are drawn to a	encie of facility Jenn, then the	1					
	a) $3\sqrt{2}$ cm	b) 3cm	c) 6cm	d) 3√3cm						
10.	A pole 3 m high	casts a shadow $\sqrt{3}$ m	n long on the ground, the	en the Sun's elevation is	1					
	a) 60°	b) 45°	c) 30°	d) 90°						
11.	What is the quad respectively?	ratic polynomial wh	ose sum and the produc	et of zeroes is $\sqrt{2}$ and $\frac{1}{3}$	1					
	a) $3x^2 - 3\sqrt{2x+1}$		b) $3x^2 + 3\sqrt{2x+1}$	1						
	c) $3x^2 + 3\sqrt{2x-1}$		d) None of the	above						
12.		a parallelogram PQF of its fourth vertex S		3,4), Q(-2,3) and R(-3,-2), then	1					
	a) (-2,-1)	b) (-2,-3)	c) (2,-1)	d) (1,2)						
13.	If x tan 60° cos 6	$50^\circ = \sin 60^\circ \cot 60^\circ$,	then x =		1					
	a) cos30°	b) tan30°	c) sin30°	d) cot30°						
14.	A card is selecte being a red face		well shuffled deck of 5	2 cards. The probability of its	1					
	a) $\frac{3}{26}$	b) $\frac{3}{13}$	c) $\frac{2}{13}$	d) $\frac{1}{2}$						
15.		C, PQ = 12 cm, AB =	16 cm and perimeter of	ΔABC is 72 cm then perimeter	1					
	of ΔPQR is	1)27	140	1) (4						
	a) 54 cm	b)27 cm	c)48 cm	d) 64 cm						


	intersect at O. If AO = 3 cm, BO = 4 cm and CO = 5 cm then DO is										
	a) 5cm		h	b) 7.5 cm							
	,			/	D	Z	C				
	c)15 cm d) $\frac{20}{3}$ cm D C										
17.	Two cubes ea	ch of volume 2	216 cm^3 are joint	ined end to end	d. Find the sur	face area of	1				
	the resulting cuboid. $1250 - 2$										
a) 95 cm^2 b) 360 cm^2 c) 250 cm^2 d) 125 cm^2 18 For the following distribution :											
18.	For the following distribution :										
	Class	0 - 5	5 - 10	10 - 15	15 - 20	20 - 25					
	Frequency	10	15	12	20	9					
	the sum of upp	er limit and lo	wer limit of the	e modal class i	S						
	a) 10	b) 15	c)	20	d) 35						
	DIRECTION:	In the questio	n number 19 a	nd 20. a statem	nent of Assertion	on (A) is follow	ved				
	DIRECTION : In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R) . Choose the correct option										
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of										
	assertion (A)										
	b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation										
	of assertion (A)										
	c) Assertion (A) is true but reason (R) is false.										
	d) Assertion (A) is false but reason (R) is true.										
19.	ASSERTION : If the HCF of two numbers is 5 and their product is 150, then their LCM is										
	30. REASON : For any two positive integers p and q, HCF (p, q) \times LCM (p, q) =p \times q										
20						$q) = p \times q$	1				
20.	ASSERTION: -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$ is in Arithmetic Progression.										
	REASON : The terms of an Arithmetic Progression cannot have both positive and negative										
	rational numbers.										
1	SECTION B										
21.	If $\tan(A+B) = \sqrt{3}$ and $\tan(A-B) = \frac{1}{\sqrt{3}}$ where $0^0 < A + B < 90^0$ and $A > B$ then find the										
	values of A and B.										
22.	An inter house cricket match was organized by a school. Distribution of runs made by the										
	students is given below. Find the median runs scored.										
	Runs scored	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100	1				
	Number of	4	6	5	3	4					
	students		Ũ	2	5						
23.	If the mid-point of the line segment joining the points A (3, 4) and B (k, 6) is P (x, y) and $x + y = 10 = 0$ find the value of k										
	x + y - 10 = 0, find the value of k.										
	(OR) Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)										
	Find the naint	on v_avie which	h is equidictor	t from the noir	te(2 - 2) and (.4.2)	1				

24.	The nth term	of an AP can	not be $n^2 + 1$.	Justify your ans	swer.				
				(OR)				2	
	Which term o	f the A.P. 27	, 24, 21,is zer	o?			P P Zersing 3		
25		1						•	
25.		-	-	, PA and PB and FB and E on the circ		,		2	
			-	PB at C and		C			
				meter of $\triangle PCD$		F	>P		
					B / L)			
		· · · ·		ECTION C					
26.	Prove that $\sqrt{3}$	is an irration	nal number.					3	
27.	Seven times	a two-digit 1	number is equa	al to four times	the number of	otained by rever	sing	3	
27.				of the digits is 3			Sing	5	
		-		-					
28.	Prove that a p	arallelogram	circumscribin	g a circle is a rl	hombus.			3	
				(OR)					
	Prove that the	e lengths of ta	angents drawn	from an extern	al point to a cir	cle are equal.			
20	T1 . 1		h	(2) = (1 + 1)(5 + 1)	·			2	
29.				(5,1) 0. Find the value		e point P in the	ratio	3	
	1.2 und it nes	on the fine 5	X IOY K	(OR)	•• 01 K.				
	Find the coord	dinates of the	e points of trise	()	e segment join	ing (4, - 1) and			
	(-2, -3)		-						
30.	F' 1.4 1	c · c	6.4	1 4 1 1 5 4 5				3	
	Find the value	e of p if meai	n of the given o	lata 15 15.45					
	Class	0 - 6	6 - 12	12 - 18	18 - 24	24 - 30			
	frequency	6	8	p	9	7			
31.	Duesse that	1	$\frac{1}{2} = 2 \sec^2 2$	٨				3	
	Prove that $\frac{1}{1}$	$+\sin A$ $ 1-$	$-\sin A = 2 \sec^2$	A					
			SF	ECTION D					
32.						narks, 9 times t		5	
	test?	have been th	e square of her	actual marks.	How many mai	ks did she get in	n the		
				(OR)					
	Places A and	B are 100 kr	n apart on a hi		r starts from A	and another fro	m B		
			-			eeds, they meet			
	-	travel toward	ds each other, t	hey meet in 1 h	our. What are t	he speeds of the	two		
	cars?								
1							1		

33.	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio. Using above theorem find the value of x for which $DE \parallel AB$ as given in figure. $B = \frac{B}{\sqrt{\frac{1}{2}}}$	5
34.	A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill. (OR) From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45°. Find the length of the flagstaff and the distance of the building from the point P. (take $\sqrt{3} = 1.732$)	5
35.	A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find: i) the area of that part of the field in which the horse can graze. ii) the area of the remaining field which the horse can't graze iii) the increase in the grazing area if the rope were 10 m long instead of 5 m. (Use π = 3.14)	5
	SECTION E	
36.	The below picture are few natural examples of parabolic shape which is represented by a quadratic polynomial. A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.	4

	where a, b and c are ii)How many zeroes iii)(A)If the zeroes of other, then find the v	does th f the qu alue of	ie po iadra k.	lynomia atic poly	$1 x^2 + 4$ nomial 2 (OR)	$2x^2 - x +$					
	iii)(B)If the sum of the polynomial.	ne roots	s is -	-p and pi	roduct of	f the roo	ts is –1/j	p, th	en find	the quadratic	
37.	 Four friends Ayush, Minal, Rohan and Shreya are playing a board game called Food master. Shown below are the current positions on the board during the first round. The rules of the game are: In each chance, two 6-sided fair dice numbered 1 to 6 are rolled by the player. The number of steps a player moves forward by is the sum of the numbers on the two dice. Each player gets a restaurant card for their first visit to any of the 16 restaurants. After 10 rounds, the player with the most number of restaurant cards wins. 										
		FRE	E				IsniM	F	ROLL	l	
		PARK	NG	ааяа	GREEK	NAIJATI	веисергі	A (*			
			FRENCH				8	SINDHI			
			KOREAN			AST	~	IRISH	 Shreya		
			odia		0°)			PARSI			
		Ayush	JEWISH	¢,) ~		-	MUGHAL			
			MISS A CHANCE		THAI GOAN	POLISH					
	Now answer the following questions based on the data which is given above. i)What are the chances that Rohan lands on 'FREE PARKING' in his next turn? ii)What is the probability of Minal landing on "ROLL AGAIN' in her next turn? iii)(A)Among Minal and Shreya, who has a higher chance of landing on the Goan restaurant in their next turn? (OR)										

38. The Great Stupa at Sanchi is one of the oldest stone structures in India, it was originally commissioned by the emperor Ashoka in the 3^{rd} century BCE. It is a perfect example of 4 combination of solid figures. It has a hemispherical dome with a cuboidal structure mounted on it of dimensions 8m x 6m x 4m (take π =22/7)

i) Calculate the volume of the cuboidal shaped top with the above-mentioned dimensions.ii) Write the formula to find volume of the sphere.

iv)(A) Find the cloth required to cover the hemispherical dome if the radius of its base is 14m.

(OR)

iii) (B) Calculate the volume of the hemispherical dome if the height of the dome is 21m.