## केंद्रीय विद्यालय संगठन, बेंगलुरु संभाग KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री-बोर्ड परीक्षा २०२४-२५ FIRST PRE-BOARD EXAMINATION-2024-25 MARKING SCHEME

Class: X

Subject: MATHEMATICS (BASIC)

Max Marks: 80 Code: 241 Time: 3 hrs

|    | SECTION A                                                                                                |   |
|----|----------------------------------------------------------------------------------------------------------|---|
| 1  | a)3                                                                                                      | 1 |
| 2  | a) consistent with unique solution                                                                       | 1 |
| 3  | c) $\frac{4}{3}$                                                                                         | 1 |
| 4  | b) 5                                                                                                     | 1 |
| 5  | c) 32cm                                                                                                  | 1 |
| 6  | d) $\triangle ABC \sim \triangle DFE$                                                                    | 1 |
| 7  | b)2:1                                                                                                    | 1 |
| 8  | a)1                                                                                                      | 1 |
| 9  | d) 3√3cm                                                                                                 | 1 |
| 10 | a)60 <sup>0</sup>                                                                                        | 1 |
| 11 | a) 3x²-3√2x+1                                                                                            | 1 |
| 12 | c) (2, -1 )                                                                                              | 1 |
| 13 | b) $\tan 30^{\circ}$                                                                                     | 1 |
| 14 | a) $\frac{3}{26}$                                                                                        | 1 |
| 15 | a)54                                                                                                     | 1 |
| 16 | $d)\frac{20}{3}$                                                                                         | 1 |
| 17 | b)360 cm <sup>2</sup>                                                                                    | 1 |
| 18 | d) 35                                                                                                    | 1 |
| 19 | a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) | 1 |
| 20 | c) Assertion (A) is true but reason (R) is false.                                                        | 1 |

|    | SECTION B                                                                                                                                                                                                                                                             |                                            |                                          |                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|-------------------|
| 21 | $tan (A + B) = \sqrt{3}$<br>$tan(A+B)=tan60^{\circ}$<br>$(A+B)=60^{\circ} \dots (i)$<br>$tan (A - B) = 1/\sqrt{3}$<br>$tan(A-B)=tan30^{\circ}$<br>$(A-B)=30^{\circ} \dots (ii)$<br>Adding (i) and (ii); we get,<br>$A+B+A-B=60^{\circ}+30^{\circ}$<br>$2A=90^{\circ}$ |                                            |                                          | 1/2<br>1/2<br>1/2 |
|    | A=45°<br>Putting the value of A in equation<br>$45^{\circ}+B=60^{\circ}$<br>$\Rightarrow B=60^{\circ}-45^{\circ}$<br>$\Rightarrow B=15^{\circ}$<br>Thus, A = 45° and B = 15°                                                                                          | on (i),                                    |                                          | ¥2                |
| 22 | class interval       free $0 - 20$ 4 $20 - 40$ 6 $(1)40 - 60$ 5 ( $60 - 80$ 3 $80 - 100$ 4         Total       n = $n/2 = 22/2 = 11$ , then the media       Median = $40 + \left[\frac{11 - 10}{5}\right]20$                                                          | quency<br>f)<br>= 22<br>n class is (40-60) | cumulative frequency 4 10 (c f) 15 18 22 | ¥2<br>¥2<br>¥2    |
|    | $= 40 + \frac{1}{5} \times 20$<br>= 40 + 4 = 44<br>median of the given data = 44 runs                                                                                                                                                                                 |                                            |                                          | 1⁄2               |
| 23 | The midpoint of the line segment joining the points A(3, 4) and B(k, 6) is P(x, y)<br>[(3 + k)/2, (4 + 6)/2] = (x, y)<br>[(3 + k)/2, (10)/2] = (x, y)<br>[(3 + k)/2, 5] = (x, y)                                                                                      |                                            |                                          | ¥2                |
|    | So, $x = 3 + k/2$ and $y = 5$<br>Put the value of x and y in the given equation of the line $x + y - 10 = 0$<br>(3 + k)/2 + 5 - 10 = 0<br>(3 + k)/2 - 5 = 0<br>(3 + k)/2 = 5<br>3 + k = 10<br>k = 10 - 3                                                              |                                            |                                          | 1/2<br>1/2<br>1/2 |
|    | (OF                                                                                                                                                                                                                                                                   | R)                                         |                                          |                   |

|    | Let the point lying on X axis which is equidistant from A(2,-2) and B(-4,2) be<br>P(x,0)<br>PA = PB<br>$\sqrt{(x-2)^2 + (0-(-2))^2} = \sqrt{(x-(-4))^2 + (0-2)^2}$<br>$(\sqrt{(x-2)^2 + (0-(-2))^2})^2 = (\sqrt{(x-(-4))^2 + (0-2)^2})^2$<br>$(x-2)^2 + 2^2 = (x+4)^2 + (-2)^2$<br>$x^2 + 4 - 4x + 4 = x^2 + 16 + 8x + 4$<br>8 - 4x = 20 + 8x<br>8 - 20 = 8x + 4x<br>-12 = 12x<br>12x = -12<br>x = -1<br>Therefore the point is P(-1,0) | ¥2<br>¥2<br>¥2<br>¥2                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 24 | $a_{n} = n^{2} + 1.$ Substituting the values, we get,<br>$a_{1} = 1^{2} + 1 = 2$<br>$a_{2} = 2^{2} + 1 = 5$<br>$a_{3} = 3^{2} + 1 = 10$<br>The <u>sequence</u> becomes 2, 5, 10,<br>$a_{2} - a_{1} \neq a_{3} - a_{2}$<br>$5 - 2 \neq 10-5$ ,<br>Therefore, the above statement does form an A.P.<br>(OR)<br>a=27<br>d=24-27=-3<br>$a_{n}=a+(n-1)d$<br>0=27+(n-1)(-3)<br>0=27-3(n-1)<br>3(n-1)=27<br>n-1=273<br>n-1=9<br>n=9+1          | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2 |
|    | n=10<br>The 10 <sup>th</sup> term of the given AP is 0                                                                                                                                                                                                                                                                                                                                                                                  |                                               |
| 25 | Perimeter of $\triangle PCD = PC + CD + PD$<br>= PC + CE + ED + PD<br>= PC + CA + DB + PD<br>= PA + PB<br>= 2PA<br>= 2(10)<br>= 20 cm [: CE = CA, DE = DB, PA = PB tangents from internal point to a circle<br>are equal]                                                                                                                                                                                                               | 1/2<br>1/2<br>1/2<br>1/2                      |

|    | SECTION C                                                                                                                                                                                       |                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 26 | Let us assume, to the contrary, that $\sqrt{3}$ is rational.                                                                                                                                    | 1/2             |
|    | $\sqrt{3} = a/b \cdot (a \text{ and } b \text{ are coprime.})$                                                                                                                                  |                 |
|    | So, $\sqrt{3b} = a$ .<br>Squaring on both sides                                                                                                                                                 | <sup>1</sup> /2 |
|    | $(\sqrt{3b})^2 = (a)^2$ .                                                                                                                                                                       |                 |
|    | $3b^2 = a^2$                                                                                                                                                                                    | 1/2             |
|    | $a^2$ is divisible by 3,                                                                                                                                                                        |                 |
|    | a is also divisible by 3.<br>Let $a = 3c$ for some integer c                                                                                                                                    |                 |
|    | Substituting for a, we get                                                                                                                                                                      | <i>¥</i> ₂      |
|    | $3b^2 = 9c^2$                                                                                                                                                                                   |                 |
|    | $b^2 = 3c^2$                                                                                                                                                                                    |                 |
|    | b <sup>2</sup> 18 divisible by 3<br>b is also divisible by 3                                                                                                                                    | 1/2             |
|    | Therefore, a and b have at least 3 as a common factor.                                                                                                                                          |                 |
|    | But this contradicts the fact that a and b are coprime.                                                                                                                                         | _               |
|    | This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is                                                                                                            | 1/2             |
|    | rational.<br>So, we conclude that $\sqrt{3}$ is irrational                                                                                                                                      |                 |
|    | so, we conclude that vs is infational.                                                                                                                                                          |                 |
| 27 | Let the ones place digit be'y' and tens place digit be 'x'                                                                                                                                      |                 |
|    | Original number = $10x + y$<br>Proventing the digits, one's place and ten's place interchanged                                                                                                  | 1/2             |
|    | Reversed number = $10v + x$                                                                                                                                                                     | 1/              |
|    | Given $7(10x + y) = 4(10y + x)$                                                                                                                                                                 | /2<br>1/2       |
|    | 70x + 7y = 40y + 4x                                                                                                                                                                             | /-              |
|    | 66x = 33y                                                                                                                                                                                       |                 |
|    | $y - 2x \dots (1)$<br>Also $y - x = 3$                                                                                                                                                          | 1/2             |
|    | Substituting 'y' value from equation (1)                                                                                                                                                        |                 |
|    | $2\mathbf{x} - \mathbf{x} = 3$                                                                                                                                                                  | 1/              |
|    | $\mathbf{x} = 3$                                                                                                                                                                                | /2              |
|    | So $y = 2x = 2(3) = 6$<br>. The original two digit number is $10x + y = 10(3) + 6 = 36$                                                                                                         | 1/2             |
|    | $\frac{1}{10} = 10(3) + 0 = 50$                                                                                                                                                                 |                 |
| 28 | Let ABCD be the rhombus circumscribing the circle with centre O, such that AB,                                                                                                                  |                 |
|    | $\therefore AP = AS$ (i) [tangents from A]                                                                                                                                                      | 1/              |
|    | $BP = BQ \qquad(ii) [tangents from B] \qquad D R C$                                                                                                                                             | 72              |
|    | CR = CQ(iii) [tangents from C]                                                                                                                                                                  | 1/2             |
|    | $DR = DS \qquad(iv) [tangents from D] \qquad s $                                                                                                                                                |                 |
|    | $= AS + BO + CO + DS \qquad [From (i), (ii), (iii), (iv)] \qquad \qquad$ |                 |
|    | = (AS + DS) + (BQ + CQ)                                                                                                                                                                         | 1/2             |
|    | = AD + BC                                                                                                                                                                                       | 1/              |
|    | Hence, $(AB + CD) = (AD + BC)$                                                                                                                                                                  | 72<br>1/2       |
|    | $\Rightarrow 2AB = 2AD$ [: opposite sides of a parallelogram are equal]<br>$\Rightarrow AB = AD$                                                                                                | 12              |
|    |                                                                                                                                                                                                 |                 |

|    | $\therefore CD = AB = AD = BC$<br>Hence, ABCD is a rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                | 1/2              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|
|    | ( <b>O</b><br>Given , To prove, Diagram, Construction<br>Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>R</b> )                                 |                                                                                                                | 1½<br>1½         |
| 29 | Given that, the line segment joining the points A(3, 2) and B(5, 1) is divided at the<br>point P in the ratio 1 : 2.<br>$\therefore \text{ Coordinate of point P} = \left(\frac{1x5+2x3}{1+2}, \frac{1x1+2x2}{1+2}\right)$ $= \left(\frac{5+6}{3}, \frac{1+4}{3}\right) = \left(\frac{11}{3}, \frac{5}{3}\right)$ $P\left(\frac{11}{3}, \frac{5}{3}\right) \text{ lies on the line } 3x - 18y + k = 0  \dots \text{ [Given]}$ $\therefore 3\left(\frac{11}{3}\right) - 18\left(\frac{5}{3}\right) + k = 0$ $\Rightarrow 11 - 30 + k = 0$ $\Rightarrow k - 19 = 0$ |                                            |                                                                                                                | 1<br>½<br>½<br>½ |
|    | $\Rightarrow$ k = 19<br>Hence, the required value of k is 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                                                                                                | 1/2              |
|    | ( <b>OR</b> )<br>Let P and Q be the points of trisection of the line segment joining A(4, -1) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                                                                |                  |
|    | <ul> <li>B(-2, -3).</li> <li>P divides A, B in the ratio 1 : 2.</li> <li>Therefore, the coordinates of P is given by</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                                                                                | 1/2              |
|    | $P = \left(\frac{1x(-2)+2x4}{1+2}, \frac{1x(-3)+2x(-1)}{1+2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                                                | 1/2              |
|    | $=(\frac{-3}{3}, \frac{-3}{3}) = (\frac{3}{3}, \frac{-3}{3}) = (2, \frac{-3}{3})$<br>Q is the midpoint of PB<br>therefore the coordinates of Q can be found out as                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                | 1/2              |
|    | $Q = \left(\frac{2+(-2)}{2}, \frac{-\frac{5}{3}+(-3)}{2}\right) = \left(\frac{0}{2}, \frac{(-5-9)/3}{2}\right) = \left(0, \frac{-14}{6}\right) = \left(0, \frac{-7}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                                                                                | 1                |
|    | Therefore, the points of trisection are P(2, $\frac{-5}{3}$ ) and Q(0, $\frac{-7}{3}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                                                                                | 1/2              |
| 30 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x <sub>i</sub><br>3<br>9<br>15<br>21<br>27 | $\begin{array}{c} f_{i} x_{i} \\ 18 \\ 72 \\ 15p \\ 189 \\ 189 \\ \Sigma \text{ fixi} = 468 + 15p \end{array}$ | 1                |
|    | $\frac{\frac{468+15p}{30+p}}{468+15p} = 15.45$ $468 + 15p = 15.45(30 + p)$ $468 + 15p = 463.5 + 15.45p$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                                                                                | 1/2<br>1/2       |
|    | 15.45p - 159 = 468 - 463.5<br>0.45p = 4.5<br>P = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                | ¥2<br>¥2         |

| 31 | LHS = $\frac{1}{1} + \frac{1}{1}$                                       |                       |
|----|-------------------------------------------------------------------------|-----------------------|
|    | $1 - \sin A$ $1 + \sin A$                                               | 4.1/                  |
|    | $=rac{1+\sin A+1-\sin A}{(1-\sin A)(1+\sin A)}$                        | 1 1⁄2                 |
|    | $\frac{2}{2}$                                                           |                       |
|    | $=rac{1-\sin^2 A}{1-\sin^2 A}$                                         | 1/2                   |
|    | - $2$                                                                   |                       |
|    | $-\frac{1}{\cos^2 A}$                                                   | 1/2                   |
|    | = 2 sec <sup>2</sup> A = RHS                                            | 1/2                   |
|    | SECTION D                                                               |                       |
|    |                                                                         |                       |
| 32 | Let her actual marks be x.<br>Therefore, $Q_{1}(r_{1}+10) = r^{2}$      | 1                     |
|    | 1 herefore, $9(x + 10) = x^2$                                           | 1                     |
|    | $x^2 - 9x - 90 = 0$<br>$x^2 - 15x + 6x - 00 = 0$                        | 1                     |
|    | x - 15x + 0x - 90 = 0<br>y(y - 15) + 6(y - 15) = 0                      | 1                     |
|    | (x - 15) + 0(x - 15) = 0<br>(x + 6)(x - 15) = 0                         | -                     |
|    | Therefore $x = -6$ or $x = 15$                                          | 1                     |
|    | Since x is the marks obtained, $x \neq -6$ . Therefore, $x = 15$ .      |                       |
|    | She has obtained 15 marks                                               | 1                     |
|    | (OR)                                                                    |                       |
|    | Let the speeds of the cars be x km/hr and y km/hr                       |                       |
|    | Case 1: When the cars are going in the same direction                   | 1/2                   |
|    | Relative speed = $x - y$                                                |                       |
|    | Distance = $100 \text{ km}$<br>Time = $100 / (x - y) = 5 \text{ hours}$ | <i>Y</i> <sub>2</sub> |
|    | x - y = 100 / (x - y) = 5 hours<br>x - y = 100 / 5=20                   | 1/                    |
|    | x - y = 20 (1)                                                          | 72<br>1/              |
|    | Case 2: When the cars are going in the opposite direction               | /2                    |
|    | Relative speed = $x + y$                                                | 1/2                   |
|    | Time =100 / $(x + y) = 1$ hour                                          | 1/2                   |
|    | x + y = 100 (2)                                                         | 1/2                   |
|    | Solving the equations (1) and (2),<br>x = 60                            | 1/2                   |
|    | x = 00<br>y = 40                                                        | 1/2                   |
|    | y = 40<br>Hence the speeds of the cars are 60 km/hr and 40 km/hr.       | 1/2                   |
|    |                                                                         |                       |
| 33 | (i)Figure, Given, To Prove, Construction                                | 2                     |
|    | Correct Proof                                                           | 2                     |
|    | (ii) CD/AD=CE/BE [by basic proportionally theorem]                      | 1                     |
|    | (x+3)/(3x+19)=(x)/(3x+4)                                                |                       |
|    | (x+3)(3x+4)=x(3x+19)<br>$2x^2+4x+0x+12=2x^2+10x$                        |                       |
|    | 3X + 4X + 9X + 12 = 3X + 19X<br>10x - 13x = 12                          |                       |
|    | 6x=12                                                                   |                       |
|    | $\therefore x=2$                                                        |                       |
|    |                                                                         |                       |



| 35 | i)Area that can be grazed by horse = Area of sector OACB                                                                                     | 1 ½        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | $=\frac{90^{\circ}}{360^{\circ}}\pi r^{2}$                                                                                                   |            |
|    | $=\frac{1}{4}\times3.14\times(5)^2$                                                                                                          |            |
|    | = 19.625 m <sup>2</sup><br>ii) the area of the remaining field which the horse can't graze= $(15x15) - 19.625$<br>= 205.375m <sup>2</sup>    | 1          |
|    | iii)Area that can be grazed by the horse when length of rope is 10 m long<br>= $\frac{90^{\circ}}{2000} \times \pi \times (10)^2$            | 1½         |
|    | $=\frac{1}{4} \times 3.14 \times 100$                                                                                                        |            |
|    | = $78.5 \text{ m}^2$<br>Increase in grazing area = ( $78.5 - 19.625$ ) m <sup>2</sup><br>= $58.875 \text{ m}^2$                              | 1          |
|    | SECTION E                                                                                                                                    |            |
| 36 | (i)Parabola                                                                                                                                  | 1          |
|    | (ii) $x^2 + 4 = 0$<br>$x^2 = -4$                                                                                                             | 1/2        |
|    | No zeroes                                                                                                                                    | 1/2        |
|    | (iii)(A) $\alpha = \frac{1}{\beta}$                                                                                                          | 1/2        |
|    | $\alpha\beta = 1$                                                                                                                            | /2         |
|    | $\begin{bmatrix} a \\ -1 \end{bmatrix}$                                                                                                      | 1/2        |
|    | $\frac{1}{2} = 1$<br>k $\frac{1}{2}$                                                                                                         | 1/2        |
|    | $\operatorname{OR}$                                                                                                                          | /-         |
|    | (iii)(B) $\alpha + \beta = -p$                                                                                                               | 1/         |
|    | $\alpha\beta = \frac{-1}{p}$                                                                                                                 | /2<br>1/2  |
|    | Quadratic polynomial $x^2 - (\alpha + \beta) x + \alpha\beta$                                                                                |            |
|    | $x = (-p)x + \frac{p}{p}$ $nx^2 + n^2 x = 1$                                                                                                 | 1/2<br>1/2 |
| 27 |                                                                                                                                              |            |
| 37 | i)P(Rohan landing on FREE PARKING) = $\frac{-}{36} = \frac{-}{6}$<br>ii)P(Minal to land on POLL AGAIN) = 0 (Since sum of numbers on two dice |            |
|    | cannot be 1)                                                                                                                                 | 1          |
|    | iii)(A) P(Minal landing on the Goan restaurant) = $\frac{5}{36}$                                                                             | 1          |
|    | P (Shreya landing on the Goan restaurant) = $\frac{4}{36}$                                                                                   | 1          |
|    | Minal has greater chance than Shreya (OR)                                                                                                    |            |
|    |                                                                                                                                              |            |
|    |                                                                                                                                              |            |

|    | iii)(B)P(Shreya reaching Ayush at the Jewish restaurant?) = $\frac{4}{36}$                                  | 1   |
|----|-------------------------------------------------------------------------------------------------------------|-----|
|    | P (Rohan reaching Ayush at the Jewish restaurant?) = $\frac{2}{36}$<br>Shreya has greater chance than Rohan | 1   |
| 38 | i) Volume of a cuboid = $l x b x h=8 x 6 x 4 = 192 m^3$                                                     | 1   |
|    | ii) Volume of the sphere = $\frac{4}{3} \pi r^3$                                                            | 1   |
|    | iii)(A) The cloth required = C.S.A of the hemisphere= $2 \pi r^2$                                           | 1   |
|    | $=2 \times \frac{22}{7} \times 14 \times 14 = 44 \times 28 = 1232 \text{ sq.m}$                             | 1+1 |
|    | (OR)                                                                                                        |     |
|    | iii)(B) Volume of the hemisphere = $\frac{2}{3}\pi r^3 = \frac{2}{3}x\frac{22}{7}x7^3 = 44x441 = 19404 m^3$ | 1+1 |
|    |                                                                                                             |     |