
KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION FIRST PREBOARD EXAMINATION (2024-25)

	CLASS: XII MAX MARKS: 70	
	SUBJECT: CHEMISTRYMARKING SCHEMETIME: 3 HOURS	
.	SECTION A	
1	b) Gabriel phthalimide synthesis	1
2	(a)CH ₃ CH ₂ Cl	1
3	(d)Zn	1
4	(a)Acetic acid	1
5	(c)0.015	1
6	(d)Sodalime & Zinc dust	1
7	$(c) C_2 O_4^{2-}$	1
3	(a)Simple sugar	1
)	(d) 8 and 4	1
10	(c) (i) & (iv)	1
11	(d) $(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$	1
12	(d)Pentan-3-one	1
13	(b)Both A and R are true but R is not the correct explanation of A.	1
4	(a) Both A and R are true and R is the correct explanation of A	1
15	(d)A is false but R is true.	1
6	(c)A is true but R is false.	1
	SECTION B	
ть	is section contains 5 questions with internal choice in one question. The following questions are very	
	ort answer type and carry 2 marks each.	
17	Henry's Law - The partial pressure of the gas in vapour phase is proportional to the mole fraction of	1
<i>'</i>	the gas in the solution.	1
	Any one applications of Henry's Law	1
	OR	1
	Raoult's Law - For any solution, the partial vapour pressure of each volatile component in the solution	-
	is directly proportional to its mole fraction.	1
	Example : n-hexane and n-heptane / bromoethane and chloroethane / benzene and toluene / any other	
	correct example	
8	(i) $[CO(NH_3)_4(H_2O)_2]Cl_3$.	1
	(ii) Potassium tetracyanidonickelate(II)	1
9	(i) $H_2 - O_2$ fuel cell	1
	(ii) High efficiency/ environment friendly	1
20		1
	Q Major product Minor product	1
	H_3C CH_3	
	Br Br CH ₃	
	(iii) CH ₃ CH ₃	
	CI	
	Y V	
	â	
		1

	1	
21	(i) The two cyclic hemiacetal forms of glucose differ only in the configuration of the hydroxyl	1
	group at C1.	. /
	(ii)Glucose does not give Schiff's test / does not form the hydrogensulphite addition product with NaHSO ₃ / The pentaacetate of glucose does not react with hydroxylamine/ Glucose is found to	$\frac{1}{2}$ $\frac{1}{2}$
	exist in two different crystalline forms (Any two)	12
	SECTION C	
	is section contains 7 questions with internal choice in one question. The followingquestions are short swer type and carry 3 marks each.	
an	swer type and carry 5 marks each.	
22		
	(i) The limiting molar conductivity of an electrolyte is equal to the sum of individual limiting molar	1
	conductivities of the cations and anions which make up the electrolyte. (ii) $\lambda^{O}CH_{3}COOH = \lambda^{O}CH_{3}COONa + \lambda^{O}HCL - \lambda^{O}NaCl$	1 ½
	= 91 + 426.16 - 126.45	1/2
	=390.71 Scm ² /mol	
23	(i)2 MnO ₂ + 4 KOH + O ₂ \rightarrow 2 K ₂ MnO ₄ + 2 H ₂ O 2 K ₂ MnO ₄ + 2 H ₂ O \rightarrow 2 KMnO ₄ + 2 KOH + H ₂	1 1
	$\begin{array}{l} 2 \text{ K}_2 \text{IMIO}_4 + 2 \text{ H}_2 \text{O} \rightarrow 2 \text{ K} \text{IMIO}_4 + 2 \text{ KOII} + \text{H}_2 \\ \text{(ii)} 2 \text{K} \text{MnO}_4 \rightarrow \text{K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2 \end{array}$	1
24		
	(a) C_6H_5CHO , CH_3CHO , HCHO	1
	(b) HCOOH, CICH ₂ COOH, CCI ₃ COOH, CF ₃ COOH	1
	(ii)	1
	$CH - C = O \xrightarrow{(i) H_2 N - NH_3} CH - CH - CH$	
	$CH_{3} \xrightarrow{(i) H_{2}N - NH_{3}} CH_{3} \xrightarrow{(ii) KOH/Glycol, \Delta} CH_{3} \xrightarrow{(ii) CH_{2} - CH_{2} - CH_{3}} Propane$	
	CH ₃	
	OR	
	(i)	
	(a)	1
	$CH_3 - C \neq O + H_2N - NH_2 \longrightarrow CH_3 - C = N - NH_2$	
	$\begin{array}{c} CH_{3} \longrightarrow C \xrightarrow{=} O + H_{2}N \longrightarrow NH_{2} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \\ CH_{3} & CH_{3} \end{array}$	1
		1 /
	(b)	$\frac{1}{2}$ $\frac{1}{2}$
	$C_6H_5 - CH_3 \xrightarrow{(a) \text{ KMnO}_4/\text{KOH}} C_6H_5 - COOH$, 2
	$C_{6}n_{5}-Cn_{3}$ (b)H. $C_{6}n_{5}-COOR$	
	(iii) Silver mirror will be formed/ reaction	
	Tollens reagent acts as oxidising agent.	

25	 (i) β-D-galactose and β -D-glucose. (ii) Nucleosides contain only sugar and a base whereas Nucleotides contain sugar, base and a 	1
	phosphate group	1
	(iii)Essential amino acids must be obtained through diet. Ex : leucine / valine / any other Non-essential amino acids are amino acids that the body can synthesize on its own,	1
	Ex: Glycine/ alanine/any other	1
26	(i) 2-methyl prop-2-en-l-ol	1
	(ii) (a) Due to electron withdrawing effect of nitrogroup, p-nitrophenoxide ion is more stable than p-methyl phenoxide ion.	1
	(b) Being an $S_N 2$ reaction, best results are obtained with primary	1
	alkyl halides or methyl halides due to less steric hinderance. Tertiary alkyl halides undergo elimination.	
27	(i) Increasing order of boiling points : (c) $<$ (a) $<$ (b)	1
	(ii) In SN ₁ reaction, formation of carbocation as an intermediate takes place. This carbocation has sp ² -	
	hybridised and planar structure. This planar carbocation is attacked by nucleophile from both the sides	
	equally to form d and l isomers in equal proportion. Such products are called racemic mixture. Hence, S _N 1	1
	reactions are accompanied by racemisation in optically active alkyl halides.	
-	Any one example	1
28	(i)conductivity of an electrolytic solution at any given concentration is the conductance of one unit volume of solution kept between two platinum electrodes with the unit area of cross-section and at a	1
	distance of unit length.	
	(ii)Conductivity of HCl decreases on dilution as number of ions per unit volume decreases.(iii) Conductivity = cell constant / resistance	1
	$\frac{(H) \text{ Conductivity Constant / resistance}}{K=1/R \times G^*}$ SECTION D	1
ma	the following questions are case-based questions. Each question has an internal choice and carries 4 (2+1- arks each. Read the passage carefully and answer the questions that follow.	-1)
29	(i) $t = \frac{1}{K} [(A)_0 - (A)]$	1⁄2
	$t = rac{1}{0.003}[(0.10) - (0.075)]$	1
	-308651994	1⁄2
	$t = \frac{1}{0.003} \times 0.025 = \frac{25}{3} = 8.3 seconds$ (ii)The molecularity of a reaction is the number of atoms, ions, or molecules that must collide with	1
	one another simultaneously in order for products to be formed in an elementary reaction. OR	
	The half-life of a reaction is the amount of time needed for a reactant concentration to decrease by half	
	compared to its initial concentration. (iii)	1
	$\frac{dx}{dt} = k[A]^2[B]^1$	
30	(i)(a)A = KI, $B = Benzene$	1/2
	(b) Azodye Test / any other Test to distinguish aniline and ethylene amine. (ii) Any correct sequence of steps showing conversion of nitrohenzane to aniline Ex using $\frac{Sn}{2n}$ (Ee +	¹ / ₂ 1
	(ii)Any correct sequence of steps showing conversion of nitrobenzene to aniline.Ex using Sn/Zn/Fe + HCl or H ₂ ,Pd	1
		1
		I

ORProducts formed are
$$C_{2}H_{3} \rightarrow OH + N_{2} \uparrow + HCISimilar domines and corry 5 marks each. All questionshave an internalchoice.SECTION EThe following questions are long answer types and carry 5 marks each. All questionshave an internalchoice.(i)(a) variable oxidation states/ ability to form complexes/provide greater surface area (any two)(b) similar atomic radii/size(ii)(a) In [Ni(CN)]5 io.,Ni2+ ion has outer electronic configuration of 3d8. Two unpaired electrons inthe 3d orbitals pair up.dsp2 hybridisation- square planar.(b)(a)(b)(b) d- transition(c)(c)(c) a mail ionic size, high charge density & presence of vacant d orbitals (any two)(b) d- d transition(c)(c) I reft-12sp2 d2 hybridisation/(Co(NH));CI[SO4 provides SO42 ions which will give a white ppt of BaSO4(a) and dimg BaCl2 solution while [Co(NH);SO3]Cl provides Cl2 ions and will give white ppt of AgClwith AgNO3 solution.(b) H2C+R2J2sp2 d2 hybridisation/outer orbital complex with 5 unpaired electrons (Fe2+) makes the complex highlyparamagnetic.32(i)(i)(H2C+H2H2 (CH4)(H2CH2CH4CH4CH(H4)(H2CH2CH2CH4CH4CH(H4)(H4CH4CH4CH4CH(H4)(H4CH4CH4CH4CH4CH(H4)(H4CH4CH4CH4CH4CH(H4)(C$$

