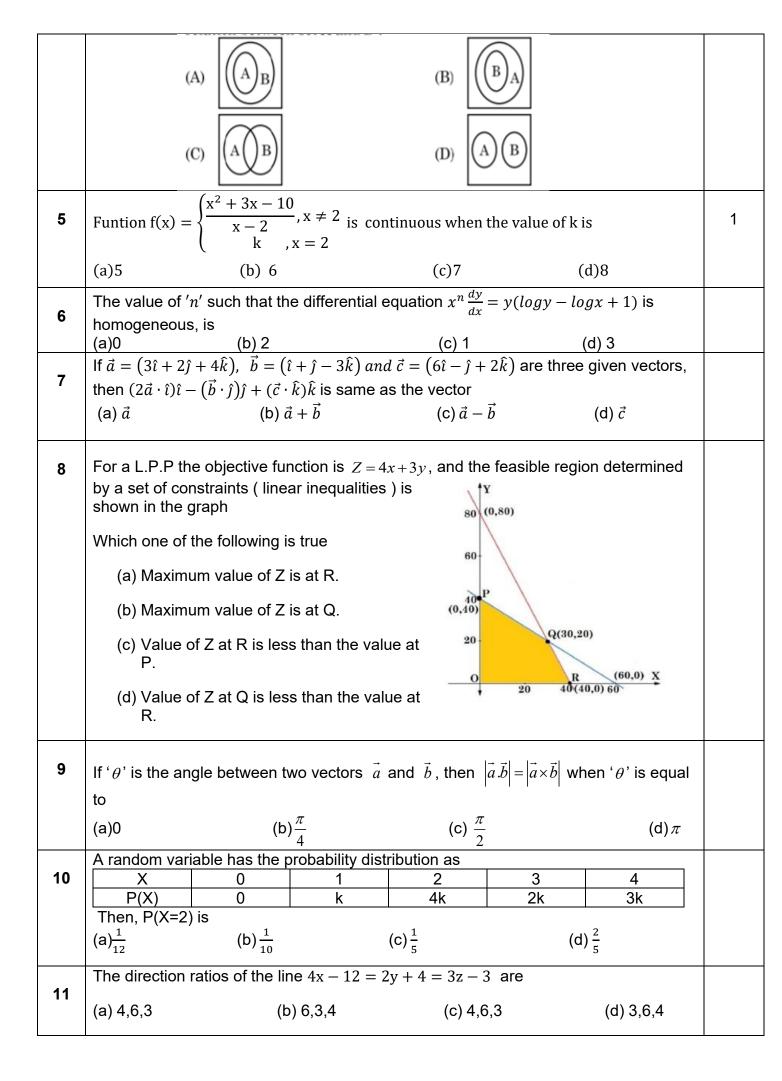
KENDRIYA VIDYALAYA SANGATHAN REGIONAL OFFICE JABALPUR PRE-BOARD-SET-A (2025 - 26) CLASS - XII

MATHEMATICS (041)


Time allowed 3 Hours Maximum Marks: 80

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 2 Assertion-Reason based questions of 1 marks each.
- 3. Section B has 5 very short Answer (VSA)- type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)- type questions of 3 marks each.
- 5. Section D has 3 Long Answer type Questions of 5 marks each.

 Section E has 3 sources based/case based/passage based/integrated units of assessment (4marks each) with sub parts.

	SECTION - A		
Direc	Direction (Q.1 - Q.18) - There are multiple choice type questions. Choose the correct answer		
Q. NO.	QUESTIONS	MARKS	
1	Given that A is a square matrix of order 3 and $ A = -2$, then $ adj(2A) $ is equal to (a) -64 (b) 128 (c)512 (d) 512	1	
2	The graph of trigonometric function is as shown. Which of the following will represent graph of its inverse?	1	
	(A) $\frac{\pi}{2}$ π (B) $\frac{\pi}{2}$ $\pi/2$ $-\pi/2$ 0 $\pi/2$		
	(C) $\frac{\pi}{2}$ (D) $\frac{\pi}{\pi/2}$		
3	If $\begin{bmatrix} 1 & 12 & 4y \\ 6x & 5 & 2x \\ 8x & 4 & 6 \end{bmatrix}$ is symmetric matrix, then (2x+y) is	1	
	(a) -8 (b) 0 (c) 6 (d) 8		
4	A denotes the set of continuous functions and B denotes the set of differentiable functions, which of the following depicts the correct relation between A and B?	1	

 $\int \frac{dx}{\sin^2 x \cos^2 x}$ equals 12 (b) tan x - cot x + C (a) tan x + cot x + C (a) $\tan x + \cot x + C$ (b) $\tan x - \cot x + C$ (c) $(\tan x - \cot x)^2 + C$ (d) $(\tan x + \cot x)^2 + C$ The value of $\int_{1+x^2}^{\sqrt{3}} \frac{1}{1+x^2} dx$ is 13 (a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{6}$ Maximum value of the function f(x) = -|x+1| + 3 is 14 (a) 2 (b) 3 (c) 4 If $A = \begin{bmatrix} k & 10 \\ 7 & k-3 \end{bmatrix}$ is a singular matrix, then value of k is/are (d) not defined 15 (c) 10, -7(a) -10, 7 (d) 7 (b) 10 16 The inverse of the matrix $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ is (a) $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 5 & 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$ (c) $\begin{bmatrix} -\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$ (d) $\begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix}$ The corner points of the feasible region determined by the system of linear constraints are (0,3), (1,1) and (3,0). Let Z = px + qy, where p, q > 0. Conditions on 17 p and q so that the minimum of z occurs at (3,0) and (1,1). (a)p = 3q(d) p = q(b) 2p = q(c) p = 3qValue of determinant $\begin{vmatrix} cos67^0 & sin67^0 \\ sin23^0 & cos23^0 \end{vmatrix}$ is 18 (c) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ (a)0(d) 1

ASSERTION - REASON BASED QUESTIONS

Direction (Q.19 - Q.20) -

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

Q. NO.	QUESTIONS	MARK S
19	Assertion (A): In set $B=\{1,2,3\}$ a relation f defined as $f=\{(1,1),(2,2)\}$ is reflexive.	
	Reason(R): A relation R is reflexive in set A if (a, a)∈ R for all a∈ A	1
20	Assertion (A): The projection of $(\hat{i} + \hat{j} + 2\hat{k})$ on vector \hat{i} is 1	
	Reason (R): The projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{ \vec{b} }$	1

SECTION - B

Direction (Q.21 - Q.25) - This section comprises of very short answer type-questions (VSA) of 2 marks each.

	of 2 marks each.		
Q. NO.	QUESTIONS	MARK S	
21	Find the domain of the function $\cos^{-1}(2x-3)$.	2	
	Find the principal value of $\tan^{-1}\left(\tan\frac{9\pi}{8}\right)$.		
22	If, $y = Ae^{7x} + Be^{-7x}$ then show that $\frac{d^2y}{dx^2} = 49y$.	2	
23A	Evaluate : $\int \frac{dx}{e^x + e^{-x}}$	2	
23B	Find the area of the shaded region in the enclosed figure.		
	X' A B $Y^2 = X$ $X = 4$		
24	Find the area of parallelogram whose one side and one diagonal are $\hat{\imath}+2\hat{\jmath}-\hat{k}$ and $2\hat{\jmath}+5\hat{k}$ respectively.	2	
25	If $x = e^{\frac{x}{y}}$, then prove that $\frac{dy}{dx} = \frac{x-y}{x log x}$	2	

SECTION - C

Direction (Q.26 - Q.31) - This section comprises of short answer type-questions (SA) of 3 marks each.

Q. NO.	QUESTIONS	MAR KS
26A	If $x = a(cost + tsint)$ and $y = a(sint - tcost)$ find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{3}$.	3
26B	Find $\frac{dy}{dx}$, if $y = x^{\sin x} + (\sin x)^{\cos x}$.	

	Solve graphically:	
27	Maximize: $Z = x + 2y$ subject to the conditions:	3
	$x + 2y \ge 100,$	
	$2x - y \le 0,$	
	$2x + y \le 200,$	
	$x \ge 0$, $y \ge 0$	
204	Find the shortest distance between the lines whose vector equations are:	2
28A	$\vec{r} = (\hat{\imath} + \hat{\jmath}) + t(2\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + s(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$	3
	OR	
200	Determine the value of λ if the following lines are perpendicular to each other:	
28B	$\frac{1-x}{-3} = \frac{3y-2}{2\lambda} = \frac{z-3}{3}$ and $\frac{x-1}{3\lambda} = \frac{1-y}{1} = \frac{2z-5}{3}$	
	A ladder 13 meters long is leaning against a wall. The bottom of the ladder is sliding	3
29	away from the wall at a rate of 2 m/s. How fast is the top of the ladder sliding down the	_
	wall when the bottom of the ladder is 5 meters from the wall?	
	A	
30A	In a classroom, the teacher explains the properties of a particular curve by saying that this particular curve has beautiful ups and downs. It starts at 1 and heads down until π	3
JUA	radian, and then heads up again as shown in the figure Then find the area enclosed by	
	the curve, $x = -\pi$ and $x = \pi$.	
	cos(x) 1	
	$-\pi$ $-\frac{\pi}{2}$ π π $\frac{3}{2}\pi$ 2π $\frac{\pi}{2}+2\pi$	
	-1	
	OR	
30B	Using integration, find the area of the region bounded by curve:	
300	$4x^2 - y$ and the line $y = 9x + 12$	
	$4x^2 = y$ and the line $y = 8x + 12$.	
	A die marked 1,2,3 in red and 4,5,6 in green is tossed.Let A be the event "numbers	3
31	even" and B be the event" numbers are marked red". Find whether the event A and B are independent or not.	
	are independent of not.	

	SECTION - D		
Direction	Direction (Q.32- Q.35) - This section comprises of long answer type-questions (LA) of 5 marks each.		
Q. NO.	QUESTIONS	MARKS	

32	Given $A = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$, find BA and use this to solve the	5
	system of equations:	
	x - y = 3, $2x + 3y + 4z = 17$, $y + 2z = 7$	
33	x-y=3, $2x+3y+4z=17$, $y+2z=7Find the image of the point (1,6,3) in the line \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3} Also, find the length of the perpendicular from the point P (1,6,3) to the line.$	5
34A	In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years ($e^{0.5}$ = 1.648)	5
34B	OR Find the particular solution of given differential equation:	
	$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{(1+x^2)}$; $y = 0$ when $x = 1$	
35	Evaluate: $\int_0^1 \frac{\log(1+x)}{(1+x^2)} dx$ OR	
	Evaluate: $\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$	

SECTION - E

Q. NO.	QUESTIONS	MARKS
36	Case-Study 1: Read the following passage and answer the questions given below: A city's traffic management department is planning to optimize traffic flow by analyzing the connectivity between various traffic signals. The city has five major spots labelled $A,, E$.	
	The department has collected the following data regarding one-way traffic flow between spots: 1. Traffic flows from <i>A</i> to <i>B</i> , to <i>C</i> , and <i>A</i> to <i>D</i> . 2. Traffic flows from <i>B</i> to <i>C</i> and <i>B</i> to <i>E</i> .	

functions. Use the given data to answer the following questions:

1. Is the traffic flow reflexive? Justify.

- 2. Is the traffic flow transitive? Justify.
- 3A. Represent the relation describing the traffic flow as a set of ordered pairs. Also state the domain and range of the relation.

OR

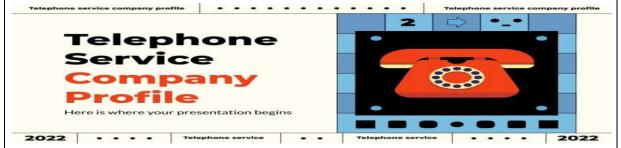
3B. Does the traffic flow represent a function? Justify your answer.

Case-Study 2: Read the following passage and answer the questions given below:

Read the following passage and answer the questions given below

A shopkeeper sells three types of flowers seeds A_1 , A_2 and A_3 . These are sold as mixture, where their proportions are 4:4:2 respectively. Also their germination rates are 45%, 60% and 35% respectively. Let A_1 : seed A_1 is chosen, A_2 : seed A_2 is chosen and A_3 : seed A_3 is chosen.

Also let E: seed germinates.


- (i) Find $P(A_1)$, $P(A_2)$ and $P(A_3)$
- (ii) Write: $P(E | A_1) + P(E | A_2) + P(E | A_3)$.
- (iii) Calculate the probability of a randomly chosen seed to germinate. Express the answer in %.

OR

Calculate the probability that seed is of the type A_2 given that a randomly chosen seed germinate.

Case-Study 3: Read the following passage and answer the questions given below:

A telephone company in a town has 500 subscribers on its list and collect fixed charge of Rs 300/- per subscriber. The company proposes to increase the annual subscription and it is believed that every increase of Rs 1, one subscribers will discontinue the service.

Answer the following questions using the above information:

- 1. How much amount can be increased for maximum Revenue?
- 2. Find the Maximum revenue received by Telephone Company.

2

1

1

2

1

1

2

2