CLASS XII CH-1: SOLUTIONS | LESSON PLAN-I | | |---|--| | Class | XII | | Subject | CHEMISTRY | | Topic | SOLUTIONS PART I | | Gist of the
Lesson/Concept | Types of solutions, Expressing concentration of solutions solubility vapour pressure of liquid solutions and Dalton's law of partial pressures. Application of types of solutions, concentration of solutions solubility and vapour pressure of solutions Effect of temperature and pressure on solubility and various concentration terms of solutions. Merits and demerits of various terms of concentration of solutions | | Focussed | Objectivity | | skills/competencies | Critical Thinking with Data & Graphical Interpretations Scientific knowledge to reason Experimentation Numerical abilities | | Targeted learning | The learner will able to | | outcomes (TLO) | Define various types of solutions, concentrations of solutions solubility and vapour pressure. Compare homogeneous and heterogeneous mixtures molality and molarity. Analyses and interprets data of various concentration terms Apply scientific reasons for several applications in industry. Give uses types of solution, concentration terms and vapour pressure Solve numericals of concentration of solutions Correlate the various concentration terms. | | Pedagogical strategies planned for achieving | Analyses and interprets various terms of concentrations of
solutions. | | the TLO | Gather data for mass percentage and volume percentage in
various medicines | | | Experiments to make standard molar solutions. | | | Group task & peer learning. | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Applications of various condition terms in our daily life. Exhibits values of honesty, objectivity & rational thinking. | | Resources including ICT | Charts ,Graphs,Powerpoint ,animations | | Inclusive practices | HOTS questions MLL questions Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. | | | Highlight and underline the key concept. | |----------------------|---| | Assessment items for | Multiple choice questions with one correct answer. | | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | Graph based questions | | | Oral testing. | | | Open book test. | | LESSON PLAN-II | | |----------------------------------|--| | Class | XII | | Subject | CHEMISTRY | | Topic | Solutions (part 2) • Ideal and non-ideal solution • Colligative properties and determination of molar mass • Abnormal molar mass | | Gist of the
Lesson/Concept | Difference between ideal and non-ideal solutions. Deviations of real solutions from Raoult's law. Description of colligative properties of solutions. and correlation with molar masses of the solute Abnormal colligative properties exhibited by some solids in solutions | | Focussed skills/competencies | Objectivity Critical Thinking with Data & Graphical Interpretations Scientific knowledge to reason Experimentation Numerical abilities | | Targeted learning outcomes (TLO) | Differentiate ideal and non ideal solutions. Distinguish solutions of positive and negative deviation with examples. Explain deviations of real solutions from Raoult's law. Describe colligative properties of solutions and correlate these with molar masses of the solute Explain abnormal colligative properties exhibited by some solutes in solutions. Compute relative lowering of vapour pressure. Calculate elevation in boiling point and depression in freezing point. Determine molar masses of solutes by measuring osmotic pressure. Calculate abnormal molar masses in case of association or dissociation among solute particles by inclusion of Van't Hoff factor. | | Pedagogical strategies | Analysis and interpretation through graphs. | | planned for achieving | Estimation of relative lowering of vapour pressure. | |------------------------|---| | the TLO | Calculation of elevation of boiling point and depression of | | | freezing point. | | | Determination of molecular masses of different biomolecules. | | | Experiments to explain uses of osmotic pressure | | | Determination of abnormal molar masses | | | • Group task & peer learning. | | Interdisciplinary | Application in antifreeze. | | linkages and infusion | Applications of osmosis in intravenous injections shrinking and | | of life skills, values | swelling of cells. | | etc | Biological importance of the process osmosis. | | | Exhibits values of objectivity & rational thinking | | Resources including | Charts ,Graphs,Powerpoint ,animations | | ICT | Charte (Crapho): 6 Welpoint (animations | | | | | | Applications of Osmosis | | | •Why does lettuce become crispy when soaked in water? | | | With do prunes expand when soaked in water? Mood cells were soaked in water, 5% glucose, and 25% plucose. Identify the blood cell that | | | received each treatment. | | | | | Inclusive practices | HOTS questions | | | MLL questions | | | Use embossed diagrams for explaining pictures & graphs. | | | Allow students to record classroom presentation or text in audio | | | format. | | | • Encourage group task & peer assistance for experiment work. | | | Highlight and underline the key concept. | | Assessment items for | Multiple choice questions with one correct answer. | | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | Graph based questions | | | Oral testing. | | | Open book test. | | measuring the | Highlight and underline the key concept. Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Graph based questions Oral testing. | # **CH-2: ELECTROCHEMISTRY** | LESSON PLAN-I | | |--
--| | Class | XII | | Subject | CHEMISTRY | | Topic | Electrochemistry (Part - I) | | Gist of the | EMF of a cell, standard electrode potential, Nernst equation and its | | Lesson/Concept | application to | | | chemical cells, Relation between Gibbs energy change and EMF of a cell | | | with Numerical | | | Faraday's Laws of electrolysis with Numerical & products of electrolysis | | Focussed | Objectivity | | skills/competencies | Critical Thinking with Data | | | Scientific knowledge to reason | | | Experimentation | | | Numerical abilities | | Targeted learning | The learner will able to | | outcomes (TLO) | Define EMF of cell, Nernst equation& Faraday's Laws of | | | electrolysis | | | Compare the Electrolytic cell and Electrochemical cell. | | | \cdot | | | Apply scientific reasons for several applications in industry and | | | explains. | | | Give uses of Electrolytic cell and Electrochemical cell. | | | Solve numericals of Nernst equation | | | Correlate with the redox reactions | | | | | Pedagogical strategies | Analyses and interprets data of Gibbs energy change and EMF of | | planned for achieving the TLO | the cell | | the TLO | Present learning through Galvanic cell. | | | Experiments to explain uses of electrochemical cell & | | | Electrolytic cell | | Total distriction | Group task & peer learning. Flooring to the line of the learning to | | Interdisciplinary | Electrochemical cells are used in torches, digital watches, | | linkages and infusion of life skills, values | military applications, corrosion protection, etc. The production of | | etc | high-purity lead, zinc, aluminum, and copper involves the use of electrolytic cells. They use it to analyze a solution for trace | | Cic | amounts of metal ions. | | | Exhibits values of honesty, objectivity & rational thinking | | Resources including | Charts, Graphs, PowerPoint, animations | | ICT | | | | Zinc anode Copper cathode | | | | | | | | | Porous membrane | | | Zn (s) Cu (s) | | | Anion | | | Zn ² Cu ² | | | ZnSO ₂ (eq) Cu ⁻² (eq) CuSO ₂ (eq) | | Inclusive practices | • HOTS questions | | merusive praedices | HOTS questionsMLL questions | | | • MLL questions | | | Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | |--|--| | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Graph based questions Oral testing. Open book test. | | LESSON PLAN-II | | |------------------------|--| | Class | XII | | Subject | CHEMISTRY | | Topic | ELECTROLYTIC CONDUCTANCE | | Gist of the | Resistance, resistivity | | Lesson/Concept | Conductance, conductivity | | _ | Cell constant | | | Molar conductivity | | | Wheatstone bridge, conductivity cell . | | Focussed | Objectivity | | skills/competencies | Critical Thinking with Data | | _ | Scientific knowledge to reason | | | Analysis | | | Numerical abilities | | Targeted learning | The learner will able to | | outcomes (TLO) | Define resistance, conductance, conductivity, molar conductivity. | | | Derive the formula for the same. | | | Derive the units of resistance, | | | resistivity, conductance, conductivity, molar conductivity. | | | Analyse the data given for conductivity and molar conductivity of
KCl at 298.15 K. | | | Formulate the expression for conductivity. | | | Solve numericals of conductivity and molar conductivity. | | | Conversion of units. | | | Describe the method for measurement of conductivity of | | | electrolytic solution and calculation of their molar conductivity. | | | Justify the use of conductivity cell. | | | Observe the table for conductivity for some different materials. | | Pedagogical strategies | Analysis and derivation of formula of conductance, conductivity | | planned for achieving | and molar conductivity. | | the TLO | Present learning through discussion. | | | Discussion on measurement of conductance. | | | Solution of numericals. | | | Group task and peer learning. | |---|---| | Interdisciplinary
linkages and infusion
of life skills, values
etc | Exhibits values of honesty, objectivity & rational thinking | | Resources including ICT | Charts ,Graphs,Powerpoint ,animations | | | Connecting R. | | Inclusive practices | HOTS questions | | 1 | MLL questions | | | Use embossed diagrams for explaining pictures & graphs. | | | Allow students to record classroom presentation or text in audio format. | | | Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for | Multiple choice questions with one correct answer. | | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | Graph based questions | | | • Oral testing. | | | Open book test. | # **CH-3: CHEMICAL KINETICS** | LESSON PLAN-I | | |--|--| | Class | XII | | Subject | CHEMISTRY | | Topic | CHEMICAL KINETICS (Part-I) | | Gist of the
Lesson/Concept | Term: Chemical Kinetics. Rate of a reaction (Average and Instantaneous). Rate of a reaction in terms of change in concentration of either of the reactants or products with time. Factors affecting rate of reaction: concentration, temperature, catalyst. Rate expression and rate constant. Order of reaction. | | | Molecularity of a reaction. | | | Elementary and complex reactions. | | Focussed skills/competencies | Analytical Skills Critical Thinking with data & graphical interpretations
Problem-Solving Skills Conceptual Understanding Communication Skills Experimental Skills Objectivity | | Targeted learning | The learner will able to | | outcomes (TLO) | Define the term chemical kinetics. Define the average and instantaneous rate of a reaction and analyse and interpret reaction rates and how they change over time, using mathematical expressions and graphical data. Express the rate of a reaction in terms of change in concentration of either of the reactants or products with time. Discuss the dependence of rate of reactions on concentration, temperature and catalyst. Define rate expression and rate constant. Understand order of reaction. Define molecularity of a reaction. Differentiate between the molecularity and order of a reaction. Solve numerical problems related to rate laws, rate constants, and reaction orders. Distinguish between elementary and complex reactions. | | Pedagogical strategies planned for achieving the TLO | Use of visual aids like graphs and charts to illustrate concepts such as reaction rates (average rate of reaction and instantaneous rate) and concentration changes. Taking example of day today life. Use of computer simulations to visualise reaction mechanisms, molecularity and order to understand the topic in a better way. Hands-on experiment to study the effect of change in the concentration and temperature on the rate of reaction between sodium thiosulphate and HCl. | | Interdisciplinary | Teaching chemical kinetics offers a unique opportunity to | | linkages and infusion of life skills, values | integrate interdisciplinary perspectives and life skills. Understanding reaction rates involves Mathematics for | | etc | calculations, critical thinking for analysing data, and communication skills for presenting findings. Values such as accuracy and persistence are essential in conducting experiments and interpreting results. Infusing these elements not only enhances scientific understanding but also cultivates a holistic approach to learning that prepares students for real-world challenges beyond the laboratory. | |--|--| | Resources including ICT | Charts, Graphs, power point presentations, animations, flash cards, concept maps. | | | $\begin{array}{c} \left[R\right]_{0} \\ \\$ | | Inclusive practices | HOTS questions. MLL questions. Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Concept maps will be drawn linking key terms and concepts. Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms and quizizz Case based questions Graph based questions Oral testing. Open book test. | | LESSON PLAN-II | | |---|---| | Class | XII | | Subject | CHEMISTRY | | Topic | CHEMICAL KINETICS II (INTEGRATED RATE EQUATION) | | Focussed skills/competencies | Zero order First order Half life of reaction Temperature dependence of rate of reaction Arrhenius equation Activation energy Effect of catalyst Collision Theory Objectivity Critical Thinking with Data & Graphical Interpretations | | - | Critical Thinking with Data & Graphical Interpretations Scientific knowledge to reason Experimentation Numerical abilities | | Targeted learning outcomes (TLO) | The learner will able to derive and apply integrated rate laws for different reaction orders (zero, first, and second). Connect the integrated rate laws with the molecular mechanisms of reactions, emphasizing the relationship between rate constants and concentrations. Solve Numerical Problems: Apply integrated rate laws to solve numerical problems involving initial concentrations, reaction times, and rate constants. Graphical Representation: Interpret and draw graphs related to integrated rate laws, such as concentration vs. time and ln(concentration) vs. time graphs Know about Arrhenius equation and its application. | | Pedagogical strategies planned for achieving the TLO | Demonstrate the derivation of integrated rate laws for zero and first order reaction Show how to integrate the differential equations and derive the equations that relate concentrations to time. Use graphs to illustrate the relationships described by integrated rate laws (e.g., concentration vs. time, ln(concentration) vs. time). Discuss how the slope and intercept of these graphs relate to reaction orders and rate constants. Highlight applications of integrated rate laws in various fields such as pharmacokinetics, environmental
chemistry, and industrial processes. Use of power point presentation for recapitulation. | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Mathematics Biology – enzyme catalyst physics | | Resources including ICT | Charts, Graphs, PowerPoint, animations | | Inclusive practices | HOTS questions | | Assessment items for measuring the attainment of LOs | The state of s | |--|--| |--|--| ## CH-4: d & f BLOCK ELEMENTS | LESSON PLAN-I | | |--|---| | Class | XII | | Subject | CHEMISTRY | | Topic | The d- and -f block elements (Part -1) | | Time | | | Gist of the
Lesson/Concept | Position of transition elements in modern periodic table . Name, series and electronic configuration of transition elements(d-block). Properties of transition elements (d-block) Atomic size, Oxidation states, Melting point, Catalytic properties, Alloy formation of coloured compounds, Magnetic properties Chemical reactivity and E⁰ values Formation of interstitial compounds Formation of complex compounds | | Focussed skills/competencies Targeted learning outcomes (TLO) | Objectivity Critical Thinking with Data & Graphical Interpretations Scientific knowledge to reason. Understanding by numerical values . Experimentation Observation The learner will able to Know about name, series and electronic configuration of transition elements (d- block). Position of transition elements in modern periodic table . Properties of transition elements (d- block) and trends in modern periodic table . | #### Pedagogical strategies Analyses and interprets data of variation in properties of d-block planned for achieving elements. the TLO Present learning through graphs. Gather data of coloured compounds of d block elements. Group task & peer learning. Interdisciplinary Many chemical reactions are catalysed by d block elements, linkages and infusion transition compounds are used in photography, formation of of life skills, values plastics ,enamels ,paints etc. etc Resources including Charts ,Graphs,Powerpoint ,table **ICT** Fig. 8.5: Colours of some of the first row transition metal ions in aqueous solutions. From left to right: V^{4+} , V^{3+} , Mn^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} and Cu^{2+} . 300 400 500 700 800 Table 8.3: Oxidation States of the first row Transition Metals (the most common ones are in bold types) +1 +2 +2 +2 +3 +3 +3 +3 +3 +3 +3 +4 +4 +4 +4 +5 +5 +6 +6 +7 Inclusive **HOTS** questions MLL questions Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Case based questions Graph based questions Oral testing. Open book test. | |--|--| |--|--| | LESSON PLAN-II | | |--|--| | Class | XII | | Subject | CHEMISTRY | | Chapter | d and f block element (Part - II) | | Topic | Oxides and oxoanions, f block elements (Lanthanoid and Actinoid) | | Gist of the | Oxides and Oxoanions of metals | | Lesson/Concept | Symbols, Name and Electronic Configuration of Lanthanoids and Actinoid | | | Atomic and Ionic size of f block elements | | | Oxidation states of Lanthanoids and actinoids | | | Physical and chemical properties of lanthanoids and Actinoids. | | Focussed | Objectivity | | skills/competencies | Critical Thinking with Data & Graphical Interpretations | | 1 | Scientific knowledge to reason. | | Targeted learning | The learner will able to | | outcomes (TLO) | Draw the structure of chromate ion and permanganate ion | | () | Write the reaction of K2Cr2O7 and KMnO4 in acidic and basic | | | medium. | | | Identify the name of
element by their symbols. | | | Write Electronic Configuration of given atomic no.s | | | Explain the change in atomic and Ionic radii on increasing atomic | | | no. | | | Describe the more stable oxidation state of the lanthanoids and
Actinoids. | | | | | | Explain the physical properties like melting point, conductivity
and Density of lanthanoids. | | | Explain the chemical behaviour of lanthanum with different | | | reagents | | | Application of lanthaniods and Actinoids in daily life | | Pedagogical strategies planned for achieving | Identify the products of reaction of KMnO4 in acidic and basic
medium. | | the TLO | Analyses and interprets variation of Ionic radii with atomic no. | | | Write the Electronic Configuration of lanthanoids and Actinoids. | | | Analyze the variation in oxidation states of lanthanoids | | | Explain the chemical behaviour of lanthanum | | | Group task & peer learning. | | Interdisciplinary | Applications of studying their physical and chemical behaviour | | linkages and infusion | helps to use them in our daily life. | | of life skills, values | Exhibits values of honesty, objectivity & rational thinking | | etc | | | Resources including ICT | • Charts ,Graphs, Powerpoint, animations. • ICT 110 Decrete Superior Supe | |--|--| | | $Ln_{2}S_{3}$ $Ln_{2}S_{3}$ $Ln_{3}S_{3}$ $Ln_{4}S_{3}$ $Ln_{4}S_{4}$ $Ln_{5}S_{3}$ $Ln_{5}S_{4}$ $Ln_{5}S_{4}$ $Ln_{5}S_{4}$ $Ln_{5}S_{4}$ $Ln_{5}S_{4}$ $Ln_{5}S_{4}$ $Ln_{5}S_{5}$ $Ln_{6}S_{4}S_{5}$ $Ln_{6}S_{4}S_{5}$ $Ln_{7}S_{5}$ | | Inclusive practices | HOTS questions MLL questions Use diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Oral testing. Open book test. | ## **CH-5: CO-ORDINATION COMPOUNDS** | LESSON PLAN-I | | |---|--| | Class | XII | | Subject | CHEMISTRY | | Topic | COORDINATION COMPOUNDS (Part - I) | | Gist of the
Lesson/Concept | Double salt, Coordination compound, Ligands & its types, Chelate ligand, Ambidentate ligand, Coordination number, Oxidation number, Homoleptic complexes, Heteroleptic complexes IUPAC nomenclature of mononuclear coordination compounds Structural isomerism linkage isomerism, ionisation isomerism, coordination isomerism & solvate (hydrate) definitions & examples Stereoisomerism (Geometrical isomerism & Optical) VBT (Magnetic behaviour, Hybridization, Shape of following. inner or outer orbital complex) | | Focussed skills/competencies | Objectivity Critical Thinking with Data Scientific knowledge to reason Experimentation Numerical abilities The learner will able to | | Targeted learning outcomes (TLO) | Define Coordination compound, Ligands & its types, Chelate ligand, Ambidentate ligand, Coordination number Compare the Homoleptic complexes, Heteroleptic complexes. Apply scientific reasons for several applications in industry and explains. Give uses of metallurgy, therapeutic chelating agents, chemical analysis, catalysis and detergents. Solve numericals of coordination number Correlate with the geometry | | Pedagogical strategies planned for achieving the TLO | Analyses and interprets data of geometric isomerism and optical isomerism Present learning through VBT Experiments to explain uses of coordination compounds Group task & peer learning. | | Interdisciplinary
linkages and infusion
of life skills, values
etc | uses of metallurgy,therapeutic chelating agents,chemical analysis,catalysis and detergents. Exhibits values of honesty, objectivity & rational thinking | | Resources including ICT | Charts ,Graphs,Powerpoint ,animations | | | (a) Red form (b) Green form | |--|--| | Inclusive practices | HOTS questions MLL questions Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Graph based questions Oral testing. Open book test. | | LESSON PLAN-II | | |---------------------|---| | Class | XII | | Subject | CHEMISTRY (Part - II) | | Topic | Crystal Field Theory, Colour in coordination compounds, Bonding in metal carbonyl, Importance and application of coordination compounds | | Gist of the | Introduction to crystal field theory | | Lesson/Concept | Colour in coordination compounds | | | Limitations of crystal field theory | | | Stability of coordination compounds | | | Importance and application of coordination compounds | | Focussed | Objectivity | | skills/competencies | Critical Thinking | | | Scientific knowledge to reason | | | • Experimentation | | Targeted learning | The learner will be able to- | | outcomes (TLO) | Understand the crystal field theory | | , , | Describe how d-orbital splitting influences the color and | | | magnetic properties of coordination compounds. | | | • Explore how the absorption of light relates to the electronic transitions within transition metal complexes. | | | Relate the observed colors of coordination compounds to their | | | structure and electronic configuration. Identify the diverse applications of coordination compounds in medicine, industry, and catalysis. Draw structures showing bonding in metal carbonyl Understand their role in biological systems | |---
---| | Pedagogical strategies planned for achieving the TLO | Provide ample practice problems and questions related to Crystal Field Theory Use case studies to demonstrate the importance of coordination compounds in various applications such as medicine Utilize interactive online tools and animations to illustrate concepts such as d-orbital splitting and bonding in metal carbonyls. Implement formative assessments such as quizzes, short answer questions, and concept maps to gauge student understanding throughout the learning process. | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Integrate the topic with Mathematical skills – graph, data interpretation Art – Drawing Explore the environmental impact of coordination compounds used in industry and medicine. | | Resources including ICT | Textbooks and Reference Books Online Educational Platforms Simulations and Virtual Labs Interactive Whiteboards | | Inclusive practices | HOTS questions MLL questions Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Case based questions Oral testing. | ### **CH-6: HALOALKANES AND HALOARENES** | LESSON PLAN-I | | |-------------------------------|--| | Class | XII | | Subject | CHEMISTRY | | Topic | HALOALKANES (Part - I) | | Gist of the | Classification | | Lesson/Concept | Nomenclature | | | Nature of C-X bond | | | Methods of preparation | | | Physical properties | | | Chemical reactions | | | SN1 and SN2 reactions | | Focussed | Objectivity | | skills/competencies | Critical Thinking | | | Scientific knowledge to reason | | | Experimentation | | | Inference | | Targeted learning | The learner will able to | | outcomes (TLO) | Define haloalkanes and understand their nomenclature. | | | Discuss the physical properties and chemical reactions of
haloalkanes. | | | Differentiate between SN1 and SN2 reaction. | | | Analyze the environmental and health impacts of haloalkanes. | | | Write the order of reactivity | | | Apply the knowledge of haloalkanes in practical scenarios | | Pedagogical strategies | Constructive approach – discuss where students construct their | | planned for achieving the TLO | understanding. | | uic ILO | Problem solving exercise, case studies Ovienes immediate feedback | | | Quizzes , immediate feedback Group took & man lagring. | | | Group task & peer learning. Virtual labor multimedia presentation. | | Interdisciplinary | Virtual labs , multimedia presentation Ozono dopletion | | linkages and infusion | Ozone depletion – haloalkanes specially CFCs Dharmacelogy, page in pharmaceuticals | | of life skills, values etc | Pharmacology – uses in pharmaceuticals Link this topic with environmental impact and policies . | | | | | LESSON PLAN-II | | |----------------|---| | Class | XII | | Subject | CHEMISTRY | | Chapter | HALOARENES (Part - II) | | Gist of the | • Introduction, classification & IUPAC nomenclature of Haloarenes | | Lesson/Concept | Physical properties of Haloarenes | | | Preparation of Haloarenes | | | Structure of Haloarenes | | | Stereochemistry of reaction mechanism | | | Chemical properties of Haloarenes Applications of organometallic compounds Environmental effects of polyhalogen compound | |---|---| | Focussed skills/competencies | Objectivity Critical Thinking Scientific knowledge to reason Experimentation | | Targeted learning outcomes (TLO) | The learner will able to able to recognize Structures alkyl halides Able to convert given name of alkyl halides to structure. Able to write the order of reactivity of different halogen derivatives. Able to describe different classes of halogen compounds. Able to write down structure of halogen compounds. Use Stereochemistry as a tool for understanding the reaction mechanism Appreciate the Applications of organometallic compounds Highlight the Environmental effects of polyhalogen compounds | | Pedagogical strategies planned for achieving the TLO Interdisciplinary | Explaining the structure of molecule using modals Performing tests and reactions in lab to understand the properties of halogen compounds. Teaching by interconversion chart. Make the student practice reactions. Teaching by comparison the chemical and physical properties of halogen compounds. Applications of Haloalkanes & Haloarenes like flame retardants, | | linkages and infusion
of life skills, values
etc | propellants, solvents, pharmaceuticals, refrigerants, fire extinguishers, and many more. • Exhibits values of honesty, objectivity & rational thinking | | Resources including ICT | Charts, PowerPoint, animations | | Inclusive practices | HOTS questions MLL questions Use Charts or flash cards for explaining name reactions. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Oral testing. Open book test. | # **CH-7: ALCOHOL, PHENOL AND ETHERS** | LESSON PLAN-I | | | |------------------------|---|--| | Class | XII | | | Subject | CHEMISTRY | | | Unit | Alcohol Phenol and ether (Part - I) | | | Gist of the | Classification and Nomenclature of alcohol | | | Lesson/Concept | General methods of preparation of alcohol | | | | Physical and chemical properties of alcohol | | | | • Distinction test for 1°, 2° & 3° alcohol | | | | Reaction mechanism of acid catalysed hydration of alkene | | | | Commercial applications of alcohol | | | Focussed | Objectivity | | | skills/competencies | Critical Thinking with reasoning | | | | Scientific knowledge to reason | | | | Experimentation | | | Targeted learning | The learner will able to | | | outcomes (TLO) | Classify alcohol on the basis of their properties ;primary, | | | | secondary and tertiary alcohols. | | | | Relates processes and phenomena with causes such as physical | | | | properties of alcohol with their structures. | | | | Write physical and chemical reactions of alcohol. | | | | • Distinguish between 1°, 2° & 3° alcohol. | | | | Understand the methods of preparation of alcohol. | | | | Give uses of alcohol in industries and in daily life. | | | Pedagogical strategies | Write formulae of alcohol, chemical equations, nomenclature etc, | | | planned for achieving | using paper and pen. | | | the TLO | Interactive ICT simulations or games of cards. | | | | Collect information on denatured, absolute, spirit alcohol. | | | | Experiments to distinguish alcohols. | | | | Group task & peer learning. | | | Interdisciplinary | Applications of alcohol in our everyday life such as drinking | | | linkages and infusion | beverages, medicines and in industries etc. | | | of life skills, values | Exhibits values of honesty, objectivity & rational thinking | | | etc | | | | Resources including | Charts, Powerpoint, animations | | | ICT | Charts, I owerpoint, animations | | | Inclusive practices | HOTS questions | | | 1 | MLL questions | | | | Encourage group task & peer assistance for experiment work. | | | | Highlight and underline the key concept. | | | Assessment items for | Multiple choice questions with one correct answer. | | | measuring the | Multiple choice questions with two correct answers. | | | attainment of
LOs | Statement based questions | | | | Assertion & reasoning based questions | | | | Google forms | | | | Case based questions | | | | Oral testing. | | | | Open book test. | | | | | | | LESSON PLAN-II | | |---|---| | Class | XII | | Subject | CHEMISTRY | | Topic | ALCOHOL, PHENOL AND ETHERS (Part – II) | | Gist of the
Lesson/Concept | common name and IUPAC name of phenol Preparation of phenol Physical properties of phenols Comparison of acidity of alcohols and phenols Chemical reaction involving cleavage of O-H bond Chemical reactions involving the cleavage ofC-O bond Directive effect of electron releasing group and electron withdrawing gp on phenols Electrophillic aromatic substitution | | Focussed skills/competencies | Objectivity Critical Thinking, analysis Scientific knowledge to reason Experimentation | | | Classification | | Targeted learning outcomes (TLO) | The learner will able to learn the IUPAC name of phenols Compare the boiling point of alcohol and phenol Know the methods of preparation of phenol mechanism of reaction. Application of phenol complete the reactions Increasing order of acid strength of phenol Important Conversions. | | Pedagogical strategies planned for achieving the TLO | learning through Chemical reactions Illustration with examples. Experiments to study iodoform reaction Name reactions Group task and peer learning | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Misuse of alcohol for drinking purpose and how it effects the central nervous system Exhibits values of honesty, objectivity & rational thinking Aspirin is used as analgesic, to be avoided | | Resources including ICT | OLAB activities | | Inclusive practices | HOTS questions MLL Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for | Multiple choice questions with one correct answer. | |----------------------|---| | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | Oral testing. | | | Open book test. | | LESSON PLAN-III | | |---|---| | Class | XII | | Subject | CHEMISTRY | | Topic | Ethers (III) | | Gist of the
Lesson/Concept | Introduction to ethers. Preparation of ethers. Physical and chemical properties of ethers. Uses of ethers. Structure activity relationship of ethers. | | Focussed skills/competencies | Objectivity Critical Thinking. Scientific knowledge to reason. Experimentation | | Targeted learning outcomes (TLO) | Know the structure of compound from normal/IUPAC name. Learn about the chemical reactivity of ethers including cleavage reactions. Explore the practical applications of ethers, such as their use as solvents, anesthetics. Understand the potential hazards associated with ethers, including their flammability and toxicity. | | Pedagogical strategies planned for achieving the TLO | Conceptual Framework: Start by establishing a clear definition and conceptual framework of ethers. Comparative Analysis: Compare ethers with other organic compounds, highlighting similarities and differences. Use molecular models, diagrams, and animations to illustrate the structure of ethers. | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Biology: Explore the role of ethers in biological systems, such as their use as solvents in biochemical reactions or as pharmaceutical agents. Discuss ethical considerations related to the use of ethers in industries, considering environmental sustainability and human health. | | Resources including ICT | Charts, PowerPoint, animations. The cold liquid used before the injection is ether | |--|---| | Inclusive practices | HOTS questions MLL questions Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Oral questions | # CH-8: ALDEHYDES, KETONE AND CARBOXYLIC ACID | LESSON PLAN-I | | |-------------------------------|--| | Class | XII | | Subject | CHEMISTRY | | Topic | ALDEHYDES AND KETONES (Part -I) | | Gist of the | Nomenclature and structure of carbonyl group | | Lesson/Concept | Preparation of aldehydes and ketones | | | Physical and chemical properties | | | Nucleophilic addition reactions | | | Reactions due to alpha hydrogen | | | Uses of aldehydes and ketones | | Focussed | Understanding | | skills/competencies | Critical Thinking | | | Scientific knowledge to reason | | | Experimentation | | Targeted learning | The learner will able to | | outcomes (TLO) | Name different aldehydes and ketones. | | | Learn methods of preparation. | | | Understand the reactivity of different carbonyl compounds | | | towards nucleophilic reaction. | | | Compare physical and chemical properties of aldehydes and | | | ketones. | | | Make flow charts of name reactions. | | | Give uses of aldehydes and ketones. | | Pedagogical strategies | Using models to explain structure of molecules. | | planned for achieving the TLO | Performing tests and reactions in lab to understand the properties
of aldehydes and ketones. | | | Comparing properties of aldehydes and ketones | | | Enhancing learning by interconversion charts | | | Encourage students to practice reactions by providing | | | worksheets. | | | Group task & peer learning. | | Interdisciplinary | Aldehydes and ketones play important role in biochemical | | linkages and infusion | processes of life, add fragrance and flavour to nature, used to | | of life skills, values | preserve biological specimens. | | etc | Exhibits values of honesty, objectivity & rational thinking | | Resources including | Models, Charts, Power point presentations, animations | | ICT | 0 | | | Carbonyl group | | | | | | | | | 0 0 | | | | | | B/~H B/~B | | | Aldehyde Ketone | | | Aldehydes and ketones in Nature | |--|--| | | CH ₃ O HO C=H (vanillin (vanilla bean) mp 80°C, bp 285°C (c) (c) (c) (c) (d) (d) (d) (d) | | | CH ₃ CH ₂ CH ₂ CH=CHCH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH=CHCH ₂ CH ₃ CH ₃ CH ₃ (CH ₃ Jasmone (spearmint oil) bp 231°C | | Inclusive practices | HOTS questions MLL questions Use models to explain structures of molecules. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | With the choice questions with one correct answer. | | | LESSON PLAN-II | | |---------------------|---|--| | Class | XII | | | Subject | CHEMISTRY | | | Topic | CARBOXYLIC ACID (Part - II) | | | Gist of the | Different carboxylic acids | | |
Lesson/Concept | Physical properties of carboxylic acid | | | | Chemical properties of carboxylic acid | | | | Uses of carboxylic acid in our daily life | | | Focussed | Objectivity | | | skills/competencies | Critical Thinking with Data Interpretations to find strength of | | | | carboxylic acid | | | | Scientific knowledge to reason | | | | Experimentation | | | | Writing chemical equations | | | Targeted learning | The learner will able to | | | outcomes (TLO) | Plans and conducts investigations and experiments to identify the
functional group present in an organic compound | | | | Draw structures of carboxylic acids to show dimer formation,
resonance stabilization of carboxylate ion, effect of substituents | | | | on the acidic strength of carboxylic acids. | | | | Use scientific convention, symbols, chemical formulae, chemical equations as per international standard | | | | Apply scientific concepts in daily life like carboxylic acids in | | | | textile industries, food industries and perfumeries Realises and appreciates the interface of chemistry with other disciplines. | |---|--| | Pedagogical strategies planned for achieving the TLO | Analyses and interprets data of pH values to find out the acidic strength. Write chemical formulae of lower acids using pen paper, ICT simulation, or game of cards. Experiments to explain uses of acids in our daily life | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Applications of carboxylic acids in our everyday life such as in soap industries, food industries Exhibits values of honesty during practicals objectivity & rational thinking | | Resources including ICT | Charts ,PPT , animations | | Inclusive practices | HOTS questions MLL questions Use embossed diagrams for explaining pictures & graphs. Allow students to record classroom presentation or text in audio format. Encourage group task & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Graph based questions Oral testing. Open book test. | ### **CH-9: AMINES** | LESSON PLAN-I | | |---|---| | Class | XII | | Subject | CHEMISTRY | | Topic | Amines (Part - I) | | Gist of the
Lesson/Concept | basicity of Amines Chemical reactions involving alkylamines and aryl amines Method of preparation of Diazonium salts Chemical reactions involving Diazonium salts | | Focussed skills/competencies | Objectivity Critical Thinking with Data Scientific knowledge to reason Experimentation | | Targeted learning outcomes (TLO) | The learner will able to Analyse and Interprets data of basicity of amines describe chemical reactions including aliphatic amines and aromatic amines Distinguish between primary, secondary and tertiary amines based on Hinsberg's reagent Describe method of preparation of diazonium salts and their chemical reactionsreactions (coupling reactions) | | Pedagogical strategies planned for achieving the TLO | Gather data for p_H for comparing basicity of amines Experiments to distinguish primary, secondary and tertiary amines. Group task & peer learning of name reactions using flash cards | | Interdisciplinary
linkages and infusion
of life skills, values
etc | Application in synthesis of medicines like Novocain, Benadryl, fibres, dyes. Occurrence in proteins, vitamins, alkaloids and hormones Exhibits values of honesty, objectivity & rational thinking | | Resources including ICT | Charts ,Powerpoint ,animations | | Inclusive practices | HOTS questions MLL questions Use flow charts for explaining chemical reactions | | | Allow students to record classroom presentation or text in audio
format. | |----------------------|--| | | Encourage group task like flash cards of important reactions & | | | peer assistance for experiment work. | | | Highlight and underline the key concept. | | Assessment items for | Multiple choice questions with one correct answer. | | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | • Oral testing. | | | Open book test. | | LESSON PLAN-II | | |--|--| | Class | XII | | Subject | CHEMISTRY | | Topic | Amines (Part - II) | | Gist of the
Lesson/Concept | basicity of Amines Chemical reactions involving alkylamines and aryl amines Method of preparation of Diazonium salts Chemical reactions involving Diazonium salts | | Focussed skills/competencies | Objectivity Critical Thinking with Data Scientific knowledge to reason Experimentation | | Targeted learning outcomes (TLO) | The learner will able to Analyse and Interprets data of basicity of amines describe chemical reactions including aliphatic amines and aromatic amines Distinguish between primary, secondary and tertiary amines based on Hinsberg's reagent Describe method of preparation of diazonium salts and their chemical reactionsreactions (coupling reactions) | | Pedagogical strategies planned for achieving the TLO Interdisciplinary linkages and infusion of life skills, values etc | Gather data for p_H for comparing basicity of amines Experiments to distinguish primary, secondary and tertiary amines. Group task & peer learning of name reactions using flash cards Application in synthesis of medicines like Novocain, Benadryl, fibres, dyes. Occurrence in proteins, vitamins, alkaloids and hormones Exhibits values of honesty, objectivity & rational thinking | | Resources including ICT | Charts ,Powerpoint ,animations Reductive R | |--
--| | Inclusive practices | HOTS questions MLL questions Use flow charts for explaining chemical reactions Allow students to record classroom presentation or text in audio format. Encourage group task like flash cards of important reactions & peer assistance for experiment work. Highlight and underline the key concept. | | Assessment items for measuring the attainment of LOs | Multiple choice questions with one correct answer. Multiple choice questions with two correct answers. Statement based questions Assertion & reasoning based questions Google forms Case based questions Oral testing. Open book test. | ## **CH-10: BIOMOLECULES** | LESSON PLAN-I | | | |--|---|--| | Class | XII | | | Subject | CHEMISTRY | | | Topic | BIOMOLECULES (PART - I) | | | Gist of the
Lesson/Concept | Classification of carbohydrates, monosaccharides and polysaccharides Glucose- preparation and structure of glucose. Fructose – preparation and structure of fructose, Polysaccharides- structure of starch and cellulose Importance of carbohydrates | | | Focussed skills/competencies | Objectivity Scientific knowledge to reason Experimentation | | | Targeted learning outcomes (TLO) | The learner will be able to understand and Learn the elements present in biomolecules and the difference between monomers and polymers. Explain the role of water in synthesis and breakdown of polymers. List the four major complex biomolecules found in living cells, and the basis for grouping of biomolecules into those four groups. For each group of biomolecules learn the name of its generic monomer (simple unit) and polymer (complex structure) and their function. Carbohydrates: Identify their chemical elements and the difference between simple sugars and complex carbohydrates. Compare and contrast the structure and function of the carbohydrates and where they are found. | | | Pedagogical strategies planned for achieving the TLO | Analyses and interprets the general terms used for monosaccharides. Making correct structure of monomer units of polysaccharides. Explaining the structure of molecule using models Performing tests and reactions in lab to understand the properties of different biomolecules. Teaching by inter conversion chart. Make the student practice reactions. Teaching by comparison the chemical and physical properties of different biomolecules. Group task & peer learning. | | | Interdisciplinary
linkages and infusion
of life skills, values etc | Biomolecules are related to biology. Biomolecules interact with each other and constitute the molecular logic of life processes. Glucose, sucrose and starch used in homes as food and other tasks. | | | Resources including ICT | Charts, PowerPoint, animations | |-------------------------|--| | | Glucose
C.H.O. | | | A CH-OH HOCH OH O | | | HOTEL : | | Inclusive practices | HOTS questions | | | MLL questions | | | Use embossed diagrams for explaining picture. Allow students to record alcoholm properties and the students to record alcoholm. | | | Allow students to record classroom presentation or text in audio
format. | | | Encourage group task & peer assistance for experiment work. | | | Highlight and underline the key concept. | | Assessment items for | Multiple choice questions with one correct answer. | | measuring the | Multiple choice questions with two correct answers. | | attainment of LOs | Statement based questions | | | Assertion & reasoning based questions | | | Google forms | | | Case based questions | | | Structure based questions | | | Oral testing. | | | Open book test. | | LESSON PLAN-II | | | |------------------------|---|--| | Class | XII | | | Subject | CHEMISTRY | | | Unit | Biomolecules (Part - II) | | | Gist of the | Classification of amino acids | | | Lesson/Concept | Structure of protein | | | | Types of protein | | | | Denaturation of protein | | | | Mechanism of enzyme action | | | | Importance of vitamins | | | | Chemical composition of nucleic acid | | | Focussed | Objectivity | | | skills/competencies | Critical Thinking with reasoning | | | _ | Scientific knowledge to reason | | | | Experimentation | | | Targeted learning | The learner will able to | | | outcomes (TLO) | Realize and appreciate the interface of chemistry with Biology. | | | | Understand the role of bio molecules. | | | | Explain structure of proteins and nucleic acids; | | | | • Exhibit creativity in designing model of DNA using eco-friendly | | | | resources. | | | |
 Differentiate between DNA and RNA based on properties. | | | Pedagogical strategies | Write formulae of amino acid, chemical equations, nomenclature | | | planned for achieving | etc, using paper and pen. | | | the TLO | Interactive ICT simulations or games of cards. | | | | Collect information on deficiency diseases and its symptoms. | | | | Experiments to distinguish amino acid. | | | | Group task & peer learning. | | | Interdisciplinary | Applications of biomolecules in our everyday life such as food, | | | linkages and infusion | medicines etc. | | | of life skills, values | Exhibits values of honesty, objectivity & rational thinking | | | etc | | | | Resources including | Charts, Powerpoint, animationsanimations | | | ICT | https://youtu.be/9bWjuwTiYXI?si=Ly6jw0JxxSFoF866 | | | Inclusive practices | HOTS questions | | | 1 | MLL questions | | | | Encourage group task & peer assistance for experiment work. | | | | Highlight and underline the key concept. | | | Assessment items for | Multiple choice questions. | | | measuring the | Statement based questions | | | attainment of LOs | Assertion & reasoning based questions | | | | Google forms | | | | Case based questions | | | | • Oral testing. | | | | | |