

Minimum Level of Learning Class XII Computer Science

“SESSION 2025-26

KENDRIYA VIDYALAYA SANGATHAN

Zonal Institute of Education & Training, Gwalior

OUR MENTOR:

MR. B.L. MORODIA

Deputy Commissioner & Director

KVS Zonal Institute of Education and Training, Gwalior

Course Coordinator

MRS. ANITA KANAJIA, T.A. ECONOMICS

RESOURCE PERSONS

1. MRS SANGEETA M CHAUHAN ,

PGT CS , PM SHRI K V NO3 GWALIOR

2. MR. ALOK GUPTA

PGT COMP, PM SHRI K V ETAWAH

VETTED BY:

1. MR RAJU DIXIT ,

PGT CS, PM SHRI K V ALIGARH

2. MR. RAKESH KUMAR SINGH YADAV

PGT CS, PM SHRI K V DOGRA LINES MEERUT CANTT

3. MR. SUNIL KUMAR BHELE

PGT CS, PM SHRI K V PUNJAB LINES MEERUT CANTT

4. MR. MANISH GUPTA

PGT CS, PM SHRI K V HATHRAS

5. MR PANKAJ SINGH

PGT(CS) , PM SHRI KV TALBEHAT

Identifiers/Data types/Conversions/Evaluation of Expression

Features in Python

1. Free and Open Source. ...

2. Object-Oriented Language. ...

3. GUI Programming Support. ...

4. Cross-platform….

5. Portable language and case sensitive ...

6. Interpreted Language….

Tokens :

The Smallest individual unit of the program is called Token.

Difference between keyword and identifier:

Keyword Identifier

Reserved words for special purpose User-defined names for program

Cannot be used as identifiers Used as names for variables, functions, etc.

Exam: if, else, for, while, def, class Exam :my_variable, calculate_area

Rules for identifier names:

1. Keywords and operators are not to be used

2. Start with an alphabet or an underscore.

3. Special characters other than underscores are not allowed.

4. Space is not allowed.

5. Can not start with a number.

6. Note: Python is case sensitive and hence uppercase and lowercase are treated differently.

Examples: mark, _For , WHILE, mark123 ,true

Identify valid and invalid identifiers:

a) _123

b) 1_23

c) 123_

d) a.123

e) true

f) break

g) data.file

h) file@record

Data Types: to identify the type of data and associated operation of handling it.

Sequence Data Type : list,tuple,string

Mapping: Dictionary

Q. Write the data type of the given data:

100, 234.89, True, true, (10), (10,), [1,2,3], {(1,2):”KVS”}

Literals are fixed data values

Python supports several types of literals:

● Numeric Literals: Represent numerical values.

○ Integer literals: Whole numbers, e.g., 11, -5, 0. They can also be represented in

binary (prefix 0b), octal (prefix 0o), or hexadecimal (prefix 0x).

○ Float literals: Decimal numbers, e.g., 3.14, -0.001, 1.0e8.

○ Complex literals: Numbers with a real and imaginary part, e.g., 2 + 3j.

● String Literals: Represent sequences of characters.

○ Enclosed in single quotes ('), double quotes ("), or triple quotes (''' or """) for

multiline strings. e.g., 'hello', "world", '''welcome to kvs'''.

● Boolean Literals: Represent either True or False value.

● Special Literal: None represents the absence of a value.

● Collection Literals: Represent collections of data.

○ List literals: Ordered, mutable sequences, e.g., [1, 2, 3].

○ Tuple literals: Ordered, immutable sequences, e.g., (1, 2, 3).

○ Dictionary literals: Unordered collections of key-value pairs, e.g., {'a': 1, 'b': 2}.

○ Set literals: Unordered collections of unique elements, e.g., {1, 2, 3}

Operators:

 Arithmetic operators +,-,*, //(floor), /, %(modulus),

**(exponent)

a=10,b=3

c=10//3

print(c)

output 3

a=10,b=3

d=a%b

print(d)

output 1

Relational Operators >,>=,<,<=,==,!=

Logical Operators AND, OR, NOT

Identity operators is, is not

Membership

operators

in, not in

Argument operators +=,-=,*=,/=,//=,%=,**= a=a+10 or a+=10

 Precedence of Operators: Order of execution of the operators.

Operators Description Associativity

() parenthesis Left to Right

** Exponentiation Right to Left

+x,-x Positive, negative (Unary) Left to Right

*,/,//,% Arithmetic

+,-

in , not in, is, is not

,<,<=,>,>=,==,!=

Membership, Identity, Relational

not Boolean not

and Boolean and

or Boolean or

Evaluate the following expression and gives the output

a) 6<12 and not (20 > 15) or (10 > 5)

b) print(4+2**3**2-55//11%3)

Comments in python: Comments are non-executable statements of python. It increases the

readability and understandability of code.

Types of comment:

i. Single line comment (#) – comments only on a single line.

e.g., a=7 # 7 is assigned to variable ‘a’

ii. multi-line comment (‘‘‘...........’’’) – Comments multiple line.

iii inline comment (#) if a==b: # compare value of a and b

Type conversion : Type conversion is the process of changing the data type of a value in

Python.

1. implicit (done by system(automatically))

2. explicit (type casting or user defined conversion)

Implicit type conversion happens automatically when Python encounters mixed data types in an

expression. It converts the data type to a higher-order data type to prevent data loss. For

example, when adding an integer to a float, Python implicitly converts the integer to a float

before performing the addition.

Example

a=10+20.7

print(a) #30.7

Explicit type conversion(type casting) is when the programmer manually converts the data type

of a value using built-in functions like int(), float(), str(), list(), tuple(), set(), and dict().

Example:

print(int(234.78)) #234

Conditional Statements/Errors

Python if else Statements – Conditional Statements

In Python,if-else is a fundamental conditional statement used for decision-making in

programming. if…else statement allows the execution of specific blocks of code depending on

the condition is True or False.

if Statement:-

if statement is the most simple decision-making statement. If the condition evaluates to True, the

block of code inside the if statement is executed.

Example of if Statement:

i = 10

Checking if i is greater than 15

if (i > 15):

 print("10 is less than 15")

print("I am Not in if"

Example of Nested If Else Statement:

i = 10

if (i == 10):

 # First if statement

 if (i < 15):

 print("i is smaller than 15")

 # Nested - if statement

 # Will only be executed if statement above

 # it is true

 if (i < 12):

if….else Statement :

if…else statement is a control statement that helps in decision-making based on specific

conditions. When the if condition is False. If the condition in the if statement is not true, the else

block will be executed.

Let’s look at some examples of if-else statements.

● Simple if-else

i = 20

 # Checking if i is greater than 0

if (i > 0):

 print("i is positive")

else:

 print("i is 0 or Negative")

● if else in One-line

If we need to execute a single statement inside the if or else block then one-line shorthand can be

used.

a = -2

Ternary conditional to check if number is positive or negative

res = "Positive" if a >= 0 else "Negative"

print(res)

Output

Negative

Logical Operators with if..else :

We can combine multiple conditions using logical operators such as and, or, and not.

age = 25

exp = 10

Using '>' operator & 'and' with if-else

if age > 23 and exp > 8:

 print("Eligible.")

else:

 print("Not eligible.")

Output

Eligible.

Nested if else Statement :

Nested if…else statement occurs when if…else structure is placed inside another if or else block.

Nested If..else allows the execution of specific code blocks based on a series of conditional

checks.

Nested-statement

Nested if Statement

if…elif…else Statement :

if-elif-else statement in Python is used for multi-way decision-making. This allows us to check

multiple conditions sequentially and execute a specific block of code when a condition is True. If

none of the conditions are true, the else block is executed.

If-elif-else-Statement:-

Example:

i = 25

 # Checking if i is equal to 10

if (i == 10):

 print("i is 10")

 # Checking if i is equal to 15

elif (i == 15):

 print("i is 15")

 # Checking if i is equal to 20

elif (i == 20):

 print("i is 20")

 # If none of the above conditions are true

else:

 print("i is not present")

 Iterative Statement

Iterative Statement/Repetition of a set of statements in a program is made possible using looping

constructs.

The ‘for’ Loop

The for statement is used to iterate over a range of values or a sequence. The for loop is executed

for each of the items in the range. These values can be either numeric, or they can be elements of

a data type like a string, list, tuple or even dictionary.

Syntax of the for Loop :

for <control-variable> in <sequence/ items in range>:

<statements inside body of the loop>

The ‘while’ Loop

The while statement executes a block of code repeatedly as long as the control condition of the

loop is true. The control condition of the while loop is executed before any statement inside the

loop is executed. After each iteration, the control condition is tested again and the loop continues

as long as the condition remains true. When this condition becomes false, the statements in the

body of loop are not executed and the control

is transferred to the statement immediately following the body of the while loop. If the condition

of the while loop is initially false, the body is not executed even once.

 Syntax of while loop:-

 while test_condition:

 body of while

Break and Continue Statement

In certain situations, when some particular condition occurs, we may want to exit from a loop

(come out of the loop forever) or skip some statements of the loop before continuing further in the

loop. These requirements can be achieved by using break and continue statements, respectively.

Lists and Tuples

Lists in Python :

Definition:

- A list is an ordered, mutable (changeable) collection of items.

- Defined using square brackets [].

Example:

my_list = [1, 2, 3, "apple", True]

Key Features:

- Ordered: Items have a defined index.

- Mutable: You can change, add, or remove elements.

Common Operations:

my_list.append("banana") # Add item

my_list[0] = 100 # Change item at index 0

del my_list[1] # Delete item at index 1

len(my_list) # Get length

Tuples in Python :

Definition:

- A tuple is an ordered, immutable (unchangeable) collection of items.

- Defined using parentheses ().

Example:

my_tuple = (1, 2, 3, "apple", True)

Key Features:

- Ordered: Items have a fixed position.

- Immutable: Cannot be changed after creation.

Common Operations:

len(my_tuple) # Get length

my_tuple[1] # Access item at index 1

Single-item Tuple:

one_item = (5,) # Note the comma!

List vs Tuple :

Feature List Tuple

Brackets [] ()

Mutable Yes No

Methods Many (e.g., append(), remove()) Few (e.g., count(), index())

Use Case When data may change When data should stay constant

Performance Slower Faster

Memory Usage Higher Lower

Hashable No Yes (if elements are hashable)

Dictionaries :

● In python a dictionary is a python data type which can store mappings in form of key-value

pairs.

● A dictionary is an ordered sequence(in recent python versions) of key-value pairs.

● A Key and value in a key-value pair in a dictionary are separated by a colon. Multiple key-

value pairs in a dictionary are separated by comma(s) and are enclosed within curly braces.

● Keys of the dictionaries are immutable types such as Integers or Strings etc. but since

values of dictionaries are mutable hence dictionaries are considered as mutable data type.

Creating an Empty Dictionary:

Mydiction1 = { } # Empty Dictionary named Mydiction1 created

print(Mydiction1)

Output:

{ }

Creating a Dictionary with multiple key value pairs:

Mydiction2 = {“SName” : “Ramesh”, “Class” : 12, “City” : “Prayagraj”}

print(Mydiction2)

Output:

{“SName” : “Ramesh”, “Class” : 12, “City” : “Prayagraj”}

Creating empty Dictionary using dict() function:

dict() function is used to create an empty dictionary as follows:

Days = dict() # Creates an empty dictionary

print(Days) # Prints an empty dictionary

Output:

{ }

Creating Dictionary(non empty) with key-value pairs using dict() function:

DaysMonth= dict(Jan = 31, Feb = 29, March = 31)

print(DaysMonth)

Output:

{'Jan': 31, 'Feb': 29, 'March': 31}

Adding key-value pairs in an existing Dictionary:

We can use Square Brackets([] with keys for adding or updating values in a dictionary. For

Example:

Months={}

Months[1] = "Jan"

Months[2] = "Feb"

Months[3] = "Mar"

Months[4] = "Apr"

Months[5] = "May"

Months[6] = "Jun"

print(Months)

Output:

{1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun'}

Accessing Elements of a Dictionary:

Elements of Dictionary may be accessed by writing the Dictionary name and key within square

brackets ([]) as given below:

SeqDay = {0 : “Sunday”, 1 : “Monday”, 2: “Tuesday”}

print(SeqDay [1])

Output:

Monday

Note: Attempting to access a key that does not exist, produces an error. Consider the following

statement

that is trying to access a non – existent key (7) from the dictionary SeqDay. it raises KeyError.

print(SeqDay[7])

Output:

KeyError : 7

Dictionary Methods/Functions:

Dictionary

Methods/Functions

Description

keys() Returns a view object that displays a list of all the keys in the dictionary.

values() Returns a view object containing all dictionary values.

items() Return the list with all dictionary keys along with their values

get() Returns the value for the given key

clear() Deletes all items from the dictionary

copy() Returns a shallow copy of the dictionary

fromkeys() Creates a dictionary from the given sequence

pop() Returns and removes the element with the given key

popitem() Returns and removes the item that was last inserted into the dictionary.

setdefault() Returns the value of a key if the key is in the dictionary, otherwise it inserts the key

with a value to the dictionary

update() Updates the dictionary with the elements from another dictionary or an iterable of

key-value pairs. By using this method we can include new data or merge it with

existing dictionaries.

Applying The Methods / Functions on Dictionary :

AMonths={1:"Jan",2:"Feb",3:"Mar",4:"Apr",5:"May",6:"Jun",

7:"July",8:"Aug",9:"Sep",10:"Oct",11:"Nov",12:"Dec"}

print(AMonths) # Prints the entire dictionary

print("All the Keys :", AMonths.keys()) # Prints all the keys of the dictionary

print("All the Values :",AMonths.values()) # Prints all the values of the dictionary

print("All the Key-value Pairs :",AMonths.items()) # Prints all the keys and values of the

dictionary

print("The Value of Key 5 :",AMonths.get(5)) # Accesses the value of the given key

AMonths.clear() # Deleting all the key-value pairs

print("Printing after applying clear() Method :", AMonths) # Printing Dictionary after applying

clear()

AMonths.update({1:"Jan",2:"Feb",3:"Mar",4:"Apr"}) # Adding key-value pairs if not

already exists

print("Printing Dictionary after Adding key-value pairs using update() Method :", AMonths)

AMonths.update({3:"March- The Third Month"}) # Modifying key-value pairs as it

already exists

print("Printing Dictionary after Modifying a key-value pair using update() Method :", AMonths)

AMonths.pop(4) # deleting key-value pair having key as 4

print("Printing Dictionary after deleting a key-value pair having key as 4 :",AMonths)

String: Represent sequences of characters.

It is enclosed in single quotes ('), double quotes ("), or triple quotes (''' or """)

 e.g., 'hello', "world", '''This is a multiline string'''.

Accessing characters in Python String

Str=’Python’

0 1 2 3 4 5 Forward index

 P y t h o n

-6 -5 -4 -3 -2 -1 Backward index

STRING SLICING

Slicing is a way to extract portion of a string by specifying the start and end indexes. The syntax

for slicing is string[start:end], where start starting index and end is stopping index (excluded).

STRING OPERATORS:

Two basic operators + and * are allowed

+ is used to combine two String (Concatenation)

 *is used for replication(repetition)

Functions in String:

Function Description

mystring[:N] Extract N number of characters from the start of the string.

mystring[-N:] Extract N number of characters from end of string

mystring[X:Y] Extract characters from middle of string, starting from X

position and ends with Y

str.split(sep=' ') Split Strings

str.replace(old_substring,

new_substring)

Replace a part of text with different substring

str.lower() Convert characters to lowercase

str.upper() Convert characters to uppercase

str.contains('pattern', case=False) Check if pattern matches (Pandas Function)

str.extract(regular_expression) Return matched values (Pandas Function)

str.count('sub_string') Count occurence of pattern in string

str.find() Return position of substring or pattern

str.isalnum() Check whether string consists of only alphanumeric characters

Question 1 : Give reason why in string s=’Welcome’, s[0]=’w’ is generating error.

Question 2 : Consider the following string s=”Green India,New India”

What will be the output of the following string operation

(1) print (s.lower()) (2) print (s.upper()) (3) print (s.count('a’) (4) print (s.find('New’))

(5) print(len(str1)-3) (6) print (s.split(",")) (7) print (s.split()) (8) print (s.replace('New', "Old"))

(9) print (s.isdigit()) (10)print(s.title())

Answer:

1. green revolution 2. GREEN REVOLUTION

3. 0 4. 12 5. 18 6. ['Green India', 'New India'] 7. ['Green', 'India,New', 'India']

8. Green India,Old India 9. False 10. Green India,New India

Python Module and Function Basics

A Python module is a file that contains a collection of related functions, classes, and variables that

can be used in other Python programs. Modules are a way to organize and reuse code, making it

easier to write and maintain large programs.

Importing Modules

1. import module_name: Imports the entire module, and you can access its functions and variables

using the module name.

2. from module_name import function/variable: Imports a specific function or variable from the

module, and you can use it directly.

3. from module_name import *: Imports all functions and variables from the module, and you can

use them directly.

The Python random module provides functionalities for generating random numbers. Here are

some basic functions:

Random Number Generation

1. random(): Returns a random floating-point number between 0 and 1.

2. randint(a, b): Returns a random integer between a and b (inclusive).

Random Sequence Operations

1. choice(seq): Returns a random element from the sequence seq.

2. shuffle(seq): Randomly rearranges the elements of the sequence seq.

Functions :

In Python, a function is a block of code that can be executed multiple times from different parts

of your program. Functions are useful for:

Benefits of Functions

1. Code Reusability: Functions allow you to reuse code, reducing duplication and improving

maintainability.

2. Modularity: Functions help to break down a large program into smaller, manageable modules.

3. Readability: Functions make your code more readable by providing a clear and concise way to

perform a specific task.

Defining a Function

In Python, you define a function using the def keyword followed by the function name and

parameters in parentheses. Here's a basic example:

def greet(name):

 print(f"Hello, {name}!")

Function Components

1. Function Name: The name of the function.

2. Parameters: Variables that are passed to the function when it's called.

3. Function Body: The code that gets executed when the function is called.

4. Return Value: The value that the function returns to the caller.

 Type of Functions and Calling Functions

Python Function Types :

Python functions can be broadly classified into three categories:

● Built-in Functions

● Library Functions (also called Functions defined in modules)

● User-defined Functions

1. Built-in Functions

Definition:

Built-in functions are pre-defined functions provided by Python. They are readily available and do

not require importing any module. These functions are designed to perform common operations

like mathematical calculations, data type conversions, string manipulations, and more.

Common Built-in Functions:

print(): Used to display messages or values on the screen.

len(): Returns the length of an object (e.g., string, list, or tuple).

sum(): Adds all elements in an iterable (e.g., list or tuple).

type(): Returns the type of the object (e.g., int, str).

max(): Returns the maximum element from an iterable or multiple arguments.

min(): Returns the minimum element from an iterable or multiple arguments.

Example of Built-in Functions

print("Welcome to Python!") # Output: Welcome to Python!

length_of_string = len("Class 12")

print("Length of string 'Class 12' is:", length_of_string) # Output: 8, as there are 8 characters

total_sum = sum([10, 20, 30, 40])

print("Sum of the list [10, 20, 30, 40] is:", total_sum) # Output: 100, sum of the list elements

data_type = type(25.5)

print("Data type of 25.5 is:", data_type) # Output: <class 'float'>

2. Library Functions (Module Functions)

Definition:

Library functions are predefined functions that are part of external libraries (also called

modules). To use these functions, you need to import the respective module using the import

statement. These functions are not included in Python’s core and extend its functionality.

Common Library Modules:

math: Provides mathematical functions like square root, trigonometry, logarithms, and constants

like pi.

random: Offers functions for generating random numbers and selections.

datetime: Handles date and time manipulations.

os: Interacts with the operating system (e.g., file handling, directory management).

Examples:

import math # Importing the math module

Using math module functions

square_root = math.sqrt(16)

print("Square root of 16 is:", square_root) # Output: 4.0, square root of 16

cosine_value = math.cos(0)

print("Cosine of 0 radians is:", cosine_value) # Output: 1.0, cosine of 0 radians

pi_value = math.pi

print("Value of pi is:", pi_value) # Output: 3.141592653589793

3. User-defined Functions

Definition:

User-defined functions are functions that are created by the user using the def keyword. These

functions allow programmers to group related code and logic into reusable blocks. They promote

code reusability, modularity, and better organization.

Syntax:

def function_name(parameters):

 # Function body

 # Perform some operations

 return value # Optional

Examples:

Function to calculate the factorial of a number

def factorial(n):

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Calling the user-defined function

result = factorial(5)

print("Factorial of 5 is:", result) # Output: 120, as factorial(5) = 5 * 4 * 3 * 2 * 1

Advantages of User-defined Functions:

● Code Reusability: Allows the same code to be reused multiple times.

● Modularity: Breaks down complex code into smaller, manageable pieces.

● Readability: Improves code readability and understanding.

● Easy Maintenance: Functions make it easier to modify and maintain code.

Understanding Actual and Formal Parameters in Python Functions

When discussing functions in Python, these are terms used to differentiate between values passed

to a function and the variables that receive these values within the function.

1. Formal Parameters (Parameters):

Definition: Formal parameters are the variables defined in the function's declaration. They act as

placeholders for the values that will be passed to the function when it is called.

Location: Formal parameters appear in the function definition, inside the parentheses.

Example:

def greet(name, age):

 print(f"Hello {name}, you are {age} years old.")

2. Actual Parameters (Arguments):

Definition: Actual parameters, often called arguments, are the real values or data that you pass to

a function when calling it.

Location: Actual parameters appear in the function call, inside the parentheses.

Example:

greet("Sachin", 33)

Passing Parameters to Functions in Python

In Python, functions can accept parameters in various ways to allow flexibility when calling them.

Understanding how parameters are passed to functions is essential for writing efficient and

readable code.

Python supports three primary types of parameter passing:

● Positional Arguments (Required Arguments)

● Keyword Arguments (Named Arguments)

● Default Arguments

1. Positional Arguments (Required Arguments)

Definition: Positional arguments are passed to a function in the same order as the parameters are

defined. The position (sequence) in which the arguments are passed during the function call

determines which parameter gets which value.

Usage: These arguments are mandatory, meaning if you skip any required positional argument

while calling the function, it will result in an error.

Example 1: Basic Positional Arguments

def add(a, b): # 'a' and 'b' are formal parameters.

 return a + b

result = add(10, 5) # 10 and 5 are positional arguments.

print("Sum is:", result) # Output: Sum is: 15

Example 2: Swapping the Positions

def student_details(name, age):

 print(f"Student Name: {name}")

 print(f"Student Age: {age}")

student_details("John", 18)

student_details(18, "John")# Output: Student Name: John, Student Age: 18

Output: Student Name: 18, Student Age: John

2. Keyword Arguments (Named Arguments)

Definition: Keyword arguments allow you to pass values by explicitly specifying the parameter

names, regardless of their position. This makes the function call more readable and avoids

confusion.

Usage: When using keyword arguments, the order of the arguments does not matter because the

parameter names are used to match the values.

Example 1: Using Keyword Arguments

def introduce (name, city):

 print(f"Hello, my name is {name} and I am from {city}.")

introduce (name="Alice", city="New York") # Output: Hello, my name is Alice and I am from

New York.

Example 2: Using Keyword Arguments

def display_employee_info (emp_name, emp_id, emp_dept):

 print(f"Employee Name: {emp_name}")

 print(f"Employee ID: {emp_id}")

 print(f"Employee Department: {emp_dept}")

name = input("Enter the employee's name: ")

id = input("Enter the employee's ID: ")

department = input("Enter the employee's department: ")

display_employee_info (emp_dept=department, emp_id=id, emp_name=name)

3. Default Arguments

Definition: Default arguments are parameters that assume a default value if no argument is

passed during the function call. They are defined by assigning a value to the parameter in the

function definition.

Usage: Default arguments are useful when you want to provide flexibility and avoid errors from

missing arguments.

Example 1: Basic Default Argument

def greet (name="Guest"): # 'name' has a default value of "Guest".

 print(f"Hello, {name}!")

greet()

greet("Sachin") # Output: Hello, Guest!

Output: Hello, Sachin!

Example 2: Multiple Default Arguments

def power(base, exponent=2): # 'exponent' has a default value of 2.

 return base ** exponent

print(power(5))

print(power(5, 3))

Output: 25, as 5^2 = 25 (exponent uses default value)

Output: 125, as 5^3 = 125 (default value is overridden)

Scope of Variable, Returning of Values, Types of Parameters in Functions

Scope of Variable

A variable is a name used to store data.

Local variable:

● Created inside a function. * Can be used only inside that function.

Example:

def show():

 x = 5 # local variable

 print(x)

Global variable:

● Created outside of all functions. * Can be used inside and outside any function.

Example:

 x = 10 # global variable

def show():

 print(x)

Returning of Values

● A function can send back a result using the return statement.

● return ends the function and gives back a value.

● You can return one or more values.

Types of Parameters

Parameters are values given to a function when it is called.

a. Required Parameters

● Must be given in the correct order.

Example:

 def greet(name):

 print("Hello", name)

greet("Amit")

b. Default Parameters

● Have a value already set. * If no value is given, the default is used.

Example:

 def greet(name="Guest"):

 print("Hello", name)

greet() # Output: Hello Guest

c. Keyword Parameters

● You give the name of the parameter while calling.

Example:

 def greet(name, message):

 print(message, name)

greet(message="Hi", name="Ravi")

d. Variable-length Parameters

● When the number of arguments is not fixed.

● *args – for many values

● **kwargs – for many key=value pairs

Example:

 def show(*names):

 for name in names:

 print(name)

show("Ram", "Shyam")

MLL-TEXT FILE

Opening a text file - It is done using the open() function.

File_object = open(r"File_Name","Access_Mode")

The file should exist in the same directory as the python program file else, the full address of the

file should be written in place of the filename.

Text File open modes –

Closing a text file – This is done by using close() function.

File_object.close()

Opening a file using with clause – the syntax is -

 with open(file_path, mode) as file:

 Here - file_path is the path to the file to open, and

 Mode is the mode of operation on the file. Eg. read, write etc.

Writing data to a text file –

For writing data into a file, the file must be opened in write mode. There are 2 methods for writing

data into a file –

write(string) : It writes the given string to the file and return the number of characters written.

Syntax –

file_object.write(string)

writelines(list) : Using this function we can give list of lines to write into the file. Syntax –

file_object.writelines(list)

Appending data to a text file –

If we want to add new contents to an already existing file, then the file must be opened in append

mode. Both the functions write() and writelines() can be used to add contents to the file.

Reading from a text file –

For reading the contents of a file, it must be opened in read mode. There are three ways to read

data from a text file –

read() : Returns the read bytes in form of a string. Reads n bytes, if no n specified, reads the

entire file.

Syntax – File_object.read([n])

readline() : Reads a line of the file and returns in form of a string. For specified n, reads at most n

bytes. However, does not reads more than one line, even if n exceeds the length of the line. Syntax

File_object.readline([n])

readlines() : Reads all the lines and return them as each line a string element in a list. Syntax –

File_object.readlines()

Seek and tell methods –

The tell() method tells you the current position within the file; in other words, the next read or

write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument indicates

the number

of bytes to be moved. The from argument specifies the reference position from where the bytes

are to be moved.If from is set to 0, it means use the beginning of the file as the reference position

and 1 means use the current position as the reference position and if it is set to 2 then the end of

the file would be taken as the reference position.

Binary Files

Binary files store data after converting it into binary language (Os and 1s), there is no EOL (End

Of Line) character. This file type returns bytes. This is the file to be used when dealing with non-

text files such as images or exe.

To write data into a binary file, we need to import Pickle module. Pickling means converting

structure (data types) into byte stream before writing the data into file. Pickle module has two main

functions:

1. pickle.dump(): To write the Object into the file

Syntax: pickle.dump(object_to_write,file_object)

2. pickle.load(): To read the Object from the file

Syntax: container_obj=pickle.load(file_object)

Program to write record in a binary file:

import pickle

f=open("myfile. dat ","wb")

for i in range(5):

r=input("Enter roll:")

n=input("Enter name:")

m=input("Enter marks:")

d={"roll":r,"name":n,"marks":m}

pickle.dump(d,f)

print("successfully done!!")

f.close()

Program to append record in a binary file:

import pickle

f=open("myfile.dat","ab")

for i in range(5):I

r=input("Enter roll:")

n=input("Enter name:")

m=input("Enter marks:")

d={"roll":r,"name":n,"marks":m}

pickle.dump(d,f)

print("successfully done!!")

f.close()

Program to read all records from a binary file:

import pickle

f=open("myfile.dat","rb")

while True:

 try:

record=pickle.load(f)

 print(record)

except EOFError:

 break

f.close()

CSV

CSV file: A CSV (Comma Separated Values) file is a plain text file that stores tabular data in a

simple format. Each line in the file represents a row, and columns are separated by commas.

Advantages of using CSV files:

 Simple and Easy to Use

• CSV files are plain text files, which makes them easy to create, read, and edit using simple

text editors like Notepad or tools like Excel.

 Lightweight and Compact

• Since they are text-based, CSV files are smaller in size compared to formats like Excel

(.xlsx), making them ideal for transferring and storing data.

 Widely Supported

• Almost all programming languages (like Python, Java, C++) and applications (Excel,

Google Sheets, databases) support reading and writing CSV files.

 Simple and Easy to Use

• CSV files are plain text files, which makes them easy to create, read, and edit using simple

text editors like Notepad or tools like Excel.

 Lightweight and Compact

• Since they are text-based, CSV files are smaller in size compared to formats like Excel

(.xlsx), making them ideal for transferring and storing data.

 Widely Supported

• Almost all programming languages (like Python, Java, C++) and applications (Excel,

Google Sheets, databases) support reading and writing CSV files.

Difference between CSV file and Text file:

A text file stores plain text with no structure, while a CSV file stores data in a tabular format

using commas (or other delimiters) to separate values.

csv.reader() is used to read the file

 Difference between writerow() and writerows():

writerow() writes a single row to the file, while writerows() writes multiple rows (a list of lists).

Importing CSV Module:

Import csv

Reading from a CSV File:

with open("data.csv", "r") as f:

 reader = csv.reader(f)

 for row in reader:

 print(row)

Writing to a CSV File:

with open("data.csv", "w", newline='') as f:

 writer = csv.writer(f)

 writer.writerow(['RollNo', 'Name', 'Class', 'Marks']) # header

 writer.writerow(['104', 'Neha', '12', '85']) # data

Python Exception Handling

What is Exception Handling?

Exception handling is a method used in programming to manage and respond to runtime errors

(exceptions) without crashing the program.

Purpose:

• Prevent program crashes. Handle unexpected situations gracefully.

• Improve code robustness and user experience.

Common Errors Handled:

• Division by zero , File not found

• Invalid input , Out-of-range index

Basic Structure: try-except

 Syntax:

try:

 # Code that may raise an exception

except ExceptionType:

 # Code to handle the exception

Explanation:

• try block: Code that might raise an error.

• except block: Code that runs only if an error of a specific type occurs.

 Example 1: Handling Division by Zero

try:

 numerator = 10

 denominator = 0

 result = numerator / denominator # Will raise ZeroDivisionError

except ZeroDivisionError:

 print("Error: Division by zero.")

Output:

Error: Division by zero.

Example 2: Handling File Not Found

try:

 file = open("non_existent_file.txt", "r") # Will raise FileNotFoundError

except FileNotFoundError:

 print("Error: File not found.")

Output:

Error: File not found.

 4. The finally Block

The finally block contains code that always executes, regardless of whether an exception

occurred or not.

try:

 # Code that may raise exceptions

except ExceptionType:

 # Handle the exception

finally:

 # Code that always executes (e.g., cleanup)

Stack

A stack is a linear data structure that follows the Last In First Out (LIFO) principle,

meaning the last element added is the first one to be removed. The primary operations for

a stack are push (to add an element) and pop (to remove an element).

Important Points about Stack:

➢ A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-

In/Last-Out (FILO) manner.

➢ In stack, a new element is added at one end and an element is removed from that end

only. The insert and delete operations are often called push and pop.

➢ Python's built-in data structure list can be used as a stack. List's append() function is used

to add elements to the top of the stack while pop() removes the element in LIFO order.

➢ Also, underflow happens when we try to pop an item from an empty stack. Overflow

happens when we try to push more items on a stack than it can hold.

Program to Demonstrate Push() and Pop() operations on Stack:

def ADDCustomer(Cust):

 n = int(input("Enter Customer no: "))

 nm = input("Enter Customer name: ")

 s = int(input("Enter salary: "))

 a = (n, nm, s)

 Cust.append(a)

 print("Customer added:", a)

 print("Current Stack:", Cust)

def DeleteCustomer(Cust):

 if not Cust:

 print("Stack Empty")

 else:

 v = Cust.pop()

 print("Element being deleted:", v)

 print("Current Stack:", Cust)

Main program

Cust = []

while True:

 print("\n1. PUSH")

 print("2. POP")

 print("3. EXIT")

 ch = input("Choose any

option: ")

 if ch == '1':

 ADDCustomer(Cust)

 elif ch == '2':

 DeleteCustomer(Cust)

 elif ch == '3':

 break

 else:

 print("Choose

correctoption")

Interface Python with mySQL
Interfacing Python with MySQL involves connecting a Python application to a MySQL database

to perform operations such as data retrieval, insertion, updating, and deletion. This note will guide

you through the process of setting up the interface, executing SQL queries, and handling results.

We will use the mysql-connector-python library, which is a popular choice for interfacing

Python with MySQL.

To install the mysql-connector-python library, run the following command:

pip install mysql-connector-python
Connecting to MySQL Database

The first step in interfacing Python with MySQL is to establish a connection to the database.

Establishing a Connection
To establish a connection, you need to import the mysql.connector module and use

the connect method. Here’s an example:

import mysql.connector

Establishing the connection

conn = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword",

database="yourdatabase")

Checking if the connection was successful

if conn.is_connected():

print("Connected to MySQL database")

Closing the Connection
It is essential to close the connection after completing the database operations to free up

resources.

Closing the connection conn.close()

Executing SQL Queries
Creating a Cursor Object
A cursor object allows you to execute SQL queries and fetch results.

cursor = conn.cursor()

Executing a Query
You can use the execute method to run SQL queries.

Executing a query

cursor.execute("SELECT * FROM tablename")

Fetching Results
After executing a SELECT query, you can fetch the results using methods

like fetchall, fetchone, or fetchmany.

Fetching all rows

rows = cursor.fetchall()

for row in rows:

print(row)

Inserting Data
To insert data into a table, you can use the INSERT INTO SQL statement.

Inserting data

cursor.execute("INSERT INTO students (name, age) VALUES ('John Doe', 22)")

Committing the transaction

conn.commit()

Updating Data
To update existing records, use the UPDATE SQL statement.

Updating data

cursor.execute("UPDATE students SET age = 23 WHERE name = 'John Doe'")

Committing the transaction

conn.commit()

Deleting Data
To delete records, use the DELETE SQL statement.

Deleting data

cursor.execute("DELETE FROM students WHERE name = 'John Doe'")

Committing the transaction

conn.commit()

COMPUTER NETWORK

Q1. Explain different types of computer network

Ans.

Type Full Form Distance Media Used Devices Used

PAN Personal Area Network 30-40 ft

 (A Room

)

Bluetooth, Infrared, Data

Cable etc.

LAN Local Area Network 0-1 Km Wifi, Twisted Wire Pair,

Ethernet Cable

Switch/Hub

MAN Metropolitan Area Network 1-15Km Coaxial Cable, Microwaves Repeaters

WAN Wide Area Network ∞ Radio Waves, Optical

Fiber, Satellite

Communication

Gateways, Routers

Q2. What do you mean by a hub or a switch?

Ans. Hub: Act as a Central Device in Star Topology. It is a passive device

Switch: is networking hardware that connects devices on a computer network by using

packet switching to receive and forward data to the destination device. Also Known as

Intelligent Hub.

Q3. What do you mean by a router?

Ans. Router: A router is a networking device that forwards data packets between computer

networks. i.e a router connects networks. Routers are intelligent devices, and they store

information about the networks they’re connected.

Q4. What do you mean by Network Topology?

Ans. Network Topology: The physical way in which computers are connected to each other in

a network is called Network Topology.

Bus: A bus topology is a topology for a Local Area Network (LAN) in which all the nodes

are connected to a single cable. The cable to which the nodes connect is called a

"backbone". If the backbone is broken, the entire segment fails.

Ring: A ring topology is a network configuration where device connections create a

circular data path. Each networked device is connected to two others, like points on a circle.

Star: A star topology is a topology for a Local Area Network (LAN) in which all nodes are

individually connected to a central connection point, like a hub or a switch.

Q5. What is URL?

Ans. URL: Uniform Resource Locator : address of a given unique resource on the Web.

e.g. http://www.cbse.nic.in/index.html

Q5. What is VoIP?

Ans. VoIP: Voice over Internet Protocol: is a technology that allows you to make voice calls

using an Internet connection instead of a regular (or analog) phone line.

Q6. What is the difference between a webpage and a website?

Ans.

Webpage Website

Webpage is a single document on the

Internet

Website is a collection of multiple webpages with

information on a related topic

Each webpage has a unique URL. Each website has a unique Domain Name

Q7. Write difference between static and dynamic webpage.

Ans. Static Web Page: A static web page (sometimes called a flat page or a stationary page) is

a web page that is delivered to the user's web browser exactly as stored. i.e. static Web

pages contain the same prebuilt content each time the page is loaded

Dynamic web page: The contents of Dynamic web page are constructed with the help of

a program. They may change each time a user visit the page. Example a webpage showing

score of a Live Cricket Match.

Q8. What do you mean by a web browser? Give Example.

Ans. Web Browser: A web browser (commonly referred to as a browser) is a software

application for accessing information on the World Wide Web. e.g. Internet Explorer,

Google Chrome, Mozilla Firefox, MS Edge, Brave, and Apple Safari.

Q9. Write Full forms of the following:

Ans. ARPANET Advanced Research Project Agency Network

 TCP/IP Transmission Control Protocol / Internet Protocol

 PPP Point To Point Ptotocol

 VoIP Voice Over Internet Protocol

 SLIP Serial Link Internet Protocol

 IMAP Internet Message Access Protocol

POP Post Office Protocol

PAN Personal Area Network

LAN Local Area Network

MAN Metropolitan Area Network

http://www.cbse.nic.in/index.html

WAN Wide Area Network

MODEM MOdulator DEModulator

SIM Subscriber Identification Module

Wi-Fi Wireless Fidelity

Q10. Explain different types of networks.

Ans.

TYPES OF NETWORKS – Based on geographical area and data transfer rate

PAN

(Personal Area Network

)

LAN

(Local Area Network)

MAN

(Metropolitan Area

Network)

WAN

(Wide Area Network)

Interconnecting few

personal devices like

laptop, mobile etc.

Area – 10 meters

Bluetooth / USB

Connects devices in

limited area, say office,

university campus etc.

Area – upto 1 Km

Ethernet Cable, Fibre

Optics, Wi-Fi etc

Extended form of LAN,

within the city.

Example – CableTV

network in a town.

Area – 30-40 Km

Connects devices, LANs

and WANs across

different parts of country

or different countries or

continents.

Example – Internet

Q11. Explain different kind of topologies.

Ans.

NETWORK TOPOLOGIES - pattern of layout or inter-connection between devices (computer nodes ,

printers etc.) in a network.

BUS topology STAR topology RING topology MESH topology

Easy to setup ;

Less cable length ;

Fault diagnosis difficult;

Not suitable for large

networks

Centrally controlled ;

Fault diagnosis easy;

Expensive to setup;

If central hub fails,

network disrupts.

Easy to setup ;

Higher rate of data

transmission;

Troubleshooting difficult

;

Network can be

expanded without

affecting existing LAN ;

Robust topology;

Complex setup

Q12. Explain different types of Transmission Media.

Ans.

 TRANSMISSION MEDIA

WIRED (Guided) WIRELESS (Unguided)

Twisted Pair Cable (Ethernet Cable)

Economical and Easy to use

Infrared – Are electromagnetic radiation for line-of-sight;

Frequency 300 GHz - 400 THz; Range 10-30 meters

stp (shielded twisted pair) ,

utp (un- shielded twisted pair)

Bluetooth - standard wireless (radio wave) communication

protocol uses 2.4 GHz frequency; max range 100 meter

Co-axial Cable

Example = cable TV wire

Radio wave (frequency range 30 Hz – 300 GHz)

Optical Fiber Cable

Most reliable, fast transmission,

expensive

Satellite (downlink frequency 1.5 – 20 GHz)

(Uplink frequency 1.6 GHz – 30 GHz)

VERY FAST, EXPENSIVE

 Microwave (frequency range 300 MHz – 300 GHz)

All unguided media = transmitter, receiver and atmosphere

Q13. Explain difference between Router and Bridge.

Ans. ROUTER: It connects multiple networks with different protocols and can handle multiple

protocols and works using IP addresses

BRIDGE: connects local networks with same standard but having different types of cables

and cannot manage multiple protocols and works using MAC addresses.

Q14. What is a repeater?

Ans. REPEATER is used to re-generate received signal and re-transmit towards destination.

 TIP - When to suggest use of Repeater?

When distance between devices is more than 90 meter

Q15. Write difference between a switch and a hub.

Ans.

SWITCH v/s HUB

An intelligent device that connects several nodes

for form a network.

An electronic device which connects several nodes to

form a network.

Sends information only to intended nodes Redirects the information to all the nodes in broadcast

form.

Q16. Write tips for case study based QA.

Ans.

Tips for CASE STUDY BASED questions

Question Hint for Answering

Layout Draw block diagram interconnecting blocks, prefer the block or unit

with maximum devices as main to connect other blocks

Topology Write name of topology – Star / Bus / Ring etc.

Placement of Server In the unit/block with maximum number of computers

Placement of Hub/Switch In every block / unit

Placement of Repeater As per layout diagram, if distance between two blocks is above 90

meter

Cost-effective medium for internet Broadband / connection over telephone lines

Communication media for LAN Ethernet (upto 100 meter) / Co-axial cable for high speed within LAN

Cost/Budget NOT an issue in LAN Optical Fiber

Communication media for Hills Radio wave / Microwave

Communication media for Desert Radio wave

Very fast communication between

two cities / countries

Satellite (avoid it in case economical / budget is mentioned)

Device / software to prevent

unauthorized access

Firewall (Hardware and/or Software)

Q17. Write difference between http and https.

Ans. HTTP: Hyper Text Transfer Protocol- transfer data from one device to another on the world

wide web. HTTP defines how the data is formatted and transmitted over the network.

HTTPS: Hypertext Transfer Protocol Secure: advanced and secure version of HTTP.

Q18. What is an email?

Ans. e-Mail or email, short for "electronic mail," is the transmission of messages electronically

over computer networks.

Q19. What are cookies?

Ans. Cookies are combination of data and short codes, which help in viewing a webpage

properly in an easy and fast way. Cookies are downloaded into our system, when we first

open a site using cookies and then they are stored in our computer only. Next time when

we visit the website, instead of downloading the cookies, locally stored cookies are used.

Though cookies are very helpful but they can be dangerous, if miss-utilized.

Q20. What are Protocols?

Ans. Protocols are set of rules, which governs a Network communication. Or set of rules that

determine how data is transmitted between different devices in a network.

DATA BASE & SQL

Q.NO. PARTICULARS

1. What is Database?

2. What is the full forms of SQL?

3. Write names of two command of DDL & DML

4. Find out DDL & DML Commands from the following:

INSERT, DELETE, ALTER, DROP

5. Write a query to display all records from the table.

6. What is a primary key?

7. Write one difference between DDL and DML.

8. A_____________ is a collection of records.

9. In a database table, each column is called a __________.

10. The clause used to filter rows in SQL is __________.

11. The command used to remove duplicates in a SELECT query is __________.

12. Which SQL command is used to retrieve data?

13. Which clause is used to sort the records in SQL?

14. What is the function of the PRIMARY KEY?

15. The wildcard character % is used in SQL with which clause?

16. Which command is used to show structure of the table named employee?

17. Write the SQL command to display all records from a table named student

18. Aman wants to remove the table Product from the database SHOP which command

will he use from the following.

19. Write MySQL statements for the following:

i. To create a databse named FOOD

ii. To create a table named Nutrients based on the following specification:

Column

Name

Data Type Constraints

Food_Item Varchar(20) Primary Key

Calorie Integer

20. . Consider the following table stored in a database SHOP:

 Table: Product
Pcode Pname Qty Price

100 Tooth Paste 100 78.0

101 Soap 500 20

102 Talc Powder 50 45.0

(i) What is the degree and cardinality of the above table?

(ii) Write a SQL command to add a new column supcode of char (20)

size in the table.

Q.No. Answer

1. A database is a collection of related data.

2. Structured Query Language

3. DDL Commands- CREATE, ALTER, DROP

DML Commands: , INSERT, DELETE, UPDATE, SELECT

4. DDL: ALTER, DROP

DML: INSERT, DELETE

5. SELECT * FROM table_name;

6. A column or group of columns that uniquely identifies each row.

7. DDL- Defines and modifies the structure of database objects like tables, schemas,

indexes etc. i.e. create, alter, drop

DML- it is used to manage data within existing tables. It Changes the content of the

database. i.e. select, update, insert, delete

8. Table

9. Field / Column/ attribute/ data item

10. Where

11. Distinct

12. Select

13. Order by

14. Primary key is used to identify each record uniquely in the table. or

A primary key is a column (or a set of columns) in a database table that uniquely

identifies each row in that table.

15. LIKE

16. Describe employee;

17. SELECT * FROM student;

18. b) Drop table Product

19. i. create database FOOD

ii. create table Nutrients (Food_Item varchar(20) primary key,

20. (i) degree-4 Cardinality-3

(ii) alter table product add (supcode char(20));

