केंद्रीय विद्यालय संगठन ,जयपुर संभाग KENDRIYA VIDYALAYA SANGATHAN ,JAIPUR REGION MARKING SCHEME PRACTICE PAPER : 2024-25

कक्षा / CLASS: 10

विषय / SUB: MATHEMATICS BASIC (कोड / CODE: 241)

(SET-B) MAX. MARKS-80

	SECTION-A (EACH QUESTION CARRY 1 MARKS)	
1.	(c)	1
2.	(a)	1
3.	(d)	1
4.	(b)	1
5.	(a)	1
6.	(d)	1
7.	(d)	1
8.	(c)	1
9.	(a)	1
10.	(b)	1
11.	(c)	1
12.	(d)	1
13.	(a)	1
14.	(c)	1
15.	(b)	1
16.	(d)	1
17.	(c)	1
18.	(d)	1
19.	(c)	1
20.	(a)Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1
	SECTION-B (EACH QUESTION CARRY 2 MARKS)	
21.	$p(x) = 5x^{2} - 4 - 8x = 5x^{2} - 8x - 4$ $= 5x^{2} - 10x + 2x - 4$ $= 5x(x - 2) + 2(x - 2)$ $= (x - 2) (5x + 2)$ $= 5(x - 2) (x + 25)$	1/2
	= 5(x − 2) (x + 25) ∴ Zeroes of p(x) are 2 and − 25	1/2

	Sum of the zeroes = $-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$	
	$\Rightarrow 2 + \left(-\frac{2}{5}\right) = \frac{-(-8)}{5}$	
	$\Rightarrow \frac{10-2}{5} = \frac{8}{5}$	1/
	$\Rightarrow \qquad \cdot \frac{8}{5} = \frac{8}{5}$	1/2
	i.e., LHS = RHS	
	⇒ relationship is verified.	
	Product of the zeroes = $\frac{\text{Constant term}}{\text{Coeffcient of } x^2}$	
	$\Rightarrow 2 \times \left(-\frac{2}{5}\right) = \left(\frac{-4}{5}\right)$	
	$\Rightarrow \frac{-4}{5} = \frac{-4}{5}$	1/2
	i.e., LHS = RHS	
	⇒ The relationship is verified.	
22.	$sin(A + B) = 1 = sin 90^{\circ}$, so $A + B = 90^{\circ}$ (i) $cos(A - B) = \sqrt{3}/2 = cos 30^{\circ}$, so $A - B = 30^{\circ}$ (ii)	1
	From (i) & (ii) $\angle A = 60^{\circ}$ and $\angle B = 30^{\circ}$	1
	OR $LHS = \sec^{2} A(\sec^{2} A - 1)$ $= (1 + \tan^{2} A) \tan^{2} A = RHS$	1
23.	For correct proof	2
24.		2
	For correct proof	
25.	We know that, in 60 minutes, the tip of minute hand moves 360° In 1 minute, it will move =	
	$360^{\circ}/60 = 6^{\circ}$: From 5:25 pm to 6:00 pm i.e. 35 min, it will move through = $35 \times 6^{\circ} = 210^{\circ}$: Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ of 210° and	1
	radius of 6 cm	
	$= \frac{210}{360} \times \pi \times 6^2 = \frac{7}{12} \times \frac{22}{7} \times 6 \times 6 = 66 \text{ cm}^2$	1
	OR Ans: Perimeter = length of major arc + 2r	
	$= \frac{270^{\circ}}{360^{\circ}} \times 2 \times \pi r + 2r$	1
	$= \frac{3}{2} \times \frac{22}{7} \times 42 + 2 \times 42$	1
	$\begin{array}{c} 2 & 7 \\ = 198 + 84 = 282 \text{ cm} \end{array}$	
	SECTION-C (EACH QUESTION CARRY 3 MARKS)	

26.		
	Let $\sqrt{3}$ is rotational number	1/2
	$\therefore \sqrt{3} = \frac{p}{q} \text{ [plq are co-prime integers & q \neq 0]}$	
	$\Rightarrow 3 = \frac{p^2}{q^2}$	
	$\Rightarrow p^2 = 3 \times q^2 \qquad \dots (1)$	1
	3 is a factor of p ²	•
	\Rightarrow 3 is a factor of p(2)	
	So $p = 3 \times m$ [m is any integer] (let)	
	∴ from (1)	
	$9 \text{ m}^2 = 3q^2$	
	\Rightarrow $q^2 = 3m^2$	
	∴ 3 is a factor of q ²	1
	\Rightarrow 3 is a factor of q(3)	
	From (2) & (3)	
	3 is a common factor of both p & q	
	It contradicts our supposition that p & q are co-prime integers.	1/2
	Hence are supposition is wrong	
	$\sqrt{3}$ is irrational	
07	Hence proved	
27.	$0.2x + 0.3y = 1.3 \dots (i)$	1
	0.4x + 0.5y = 2.3 (ii) For correct answer through any method	2
	x = 2 and $y = 3$	
	OR .	
	(ii) We have, $3x + y = 1 \implies 3x + y - 1 = 0$ (i)	
	(2k-1) x + (k-1) y = 2k+1	1
	$\Rightarrow (2k-1) x + (k-1) y - (2k+1) = 0 $	
	Here, $a_1 = 5, b_1 = 1, c_1 = -1$ $a_2 = 2k - 1, b_2 = k - 1, c_2 = -(2k + 1)$	
	For no solution, we must have	
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \implies \frac{3}{2k-1} = \frac{1}{k-1} \neq \frac{1}{2k+1}$	1
	Now, $\frac{3}{2k-1} = \frac{1}{k-1} \implies 3k-3 = 2k-1$	'
	$2k-1 k-1$ $\Rightarrow \qquad 3k-2k=3-1 \Rightarrow \qquad k=2$	
	Hence, the given system of equations will	
		1
	have no solutions for $k = 2$.	

28.	$\alpha + \beta = -(-7/2)$, $\alpha\beta = 3/2$	
	$\alpha^2 + \beta^2 = {\alpha + \beta}^2 2\alpha\beta$ = $(7/2)^2 - 2(3/2) = 49/4 - 3$	1
	= 37/4	
		1
		1
29.	LHS = $(\csc \theta - \cot \theta)^2 = (1/\sin \theta - \cos \theta/\sin \theta)^2 = (1 - \cos \theta)^2/\sin^2 \theta$	1
	$(1-\cos\theta)^2 / 1-\cos^2\theta = (1-\cos\theta)^2 / (1+\cos\theta)(1-\cos\theta)$	1
	$(1-\cos\theta)/(1+\cos\theta)$	1
30.	For correct proof	3
	OR	1
	For correct diagram	2
	For correct proof	
31.	(i) 1/6	1
	(ii) 1/2 (iii) 1/9	1 1
	SECTION-D (EACH QUESTION CARRY 5 MARKS)	
32.	(a)Given: S5 + S7 = 167	
	\Rightarrow 5/2[2a + (5 − 1)d] + 7/2 [2a + (7 − 1)d] = 167 [S <sub<n (2a="" (n="" +="" 1)d)<br="" =="" n2="" −="">\Rightarrow 5/2[2a + 4d] + 7/2[2a + 6d] = 167</sub<n>	1/2
	$\Rightarrow 5/2[2a + 4d] + 7/2[2a + 6d] = 167$ $\Rightarrow 5(a + 2d) + 7(a + 3d) = 167$	/2
	\Rightarrow 5a + 10d + 7a + 210 = 167	1/2
	\Rightarrow 12a + 31d = 167 Now, S10 = 10/2 (2a + (10 - 1)d) = 235	/2
	$\Rightarrow 5[2a + 9d] = 235$	
	\Rightarrow 10a + 45d = 235 Solving (i) and (ii), we get a = 1 and d = 5	1
	a1 = 1	
	$a2 = a + d \Rightarrow 1 + 5 = 6$	1
	$a3 = a + 2d \Rightarrow 1 + 10 = 11$ Hence A.P. is 1, 6, 11	'
	(b) let the angles be a − d, a, a + d; a > 0, d > 0 ∴ Sum of angles = 180°	
	\therefore a - d + a + a + d = 180°	1/2
	$\Rightarrow 3a = 180^{\circ} : a = 60^{\circ}(i)$ By the given condition	
	By the given condition $a - d = a + d2$	
	$\Rightarrow 2 = 2a - 2d = a + d$	
	$\Rightarrow 2a - a = d + 2d \Rightarrow a = 3d$ \Rightarrow d = a3=60\cdot 3 = 20\cdot [From (i)	
	∴ Angles are: 60° – 20°, 60°, 60° + 20°	1½
	i.e., 40°, 60°, 80°	
	OR	

	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	2
	$X' = \frac{3}{4} = \frac{3}{3} = \frac{3}{4} =$	2
	By plotting points and joining them, the lines intersesct at A(6, 0) \therefore x = 6, y = 0 Line x + 3y = 6 intersects Y-axis at B(0, 2) and Line 2x - 3y = 12 intersects Y-axis at C(0, -4). Therefore, Area of triangle formed by the lines with y-axis. Area of triangle = 1/2 × base × corresponding altitude = 1/2 × BC × AO = 1/2 × 6 × 6 = 18 sq. units	1
33.	For correct diagram For correct proof of theorem (BPT) For correct answer.	1 2 2

34.	Radius of the cylindrical part, r= 1.4 cm
	Length of the cylindrical part , $h = (5-2xx 1.4)$
) cm = 2.2 cm
	Volume of one gulabjamun
	= volume of 2 hemispherical parts + volume
	of cylinder part

1

1

1

1

1

$$egin{aligned} &= \left(2 imes rac{2}{3} \pi r^3 + \pi r^2 h
ight) \left(rac{4}{3} \pi r^3 + \pi r^2 h
ight) \ &= \pi r^2 \left(rac{4}{3} r + h
ight) \ &= \left[rac{22}{7} imes 1.4 imes 1.4 imes \left(rac{4}{3} imes 1.4 + 2.2
ight)
ight] cm^2 \ &= \left(6.16 imes rac{12.2}{3}
ight) cm^3 = \left(rac{75.152}{3}
ight) cm^3 \end{aligned}$$

Volume of 45 gulabjamuns

$$=\left(rac{75.152}{3} imes45
ight)\!cm^3=1127.28cm^3$$

Volume of the syrup = (30 % of 1127.28) cm^3

$$=igg(rac{30}{100} imes1127.\,28igg)cm^3=338.184cm^3$$

Hence , 45 gulab jamuns contain approximately $338cm^3$ of syrup .

OR

Radius of the base of cylinder (r) = 2.8 m = Radius of the base of the cone (r)

Height of the cylinder (h)=3.5 m Height of the cone (H)=2.1 m. Slant height of conical part

(I)=
$$\sqrt{(r^2 + H^2)}$$

$$=\sqrt{[(2.8)^2+(2.1)^2]}$$

=
$$\sqrt{(7.84 + 4.41)}$$
 = $\sqrt{12.25}$ = 3.5 m

Area of canvas used to make tent = CSA of cylinder + CSA of cone

$$= 2\pi rh + \pi rl = \pi r(2h + l) = 92.4 \text{ msq}.$$

Cost of 1500 tents at ₹120 per sq.m = 1500 × 120 × 92.4 = 1,66,32,000 Share of each school to set up the tents = 16632000/50= Rs.332640

35.				
00.		Class	Frequency	Cumulative Frequency
		65-85	4	4
		85-105	х	4 + x
		105-125	13	17+ x
		125-145	20	37+ x
		145-165	14	51+ x
		165-185	у	51 + x + y
		185-205	4	55 + x + y
		class is "125–14		1 = 125, f = 20 h = 20, N = 68
	Median	$1 = 1 + \left(\frac{\frac{2}{n} - of}{p}\right)$	хh	
	⇒ 137	= 125 + (==================================	<u>-131-8</u>) x 20	
		7 – 125 = 17 – X		69 - · · · 9
	-	⇒ X = 17 – 12	=5 ⇒ 55+5+y=	-
				N-E (EACH QUESTION
86.		distance f = √36=6	ormula AB=	$= \sqrt{(3-6)^2 + (4-7)^2} = \sqrt{(9+9)^2}$
		=√36 =6		0.5
	Squar	·e		OR
				10 15 01 1001
37.				$= AC - AB = 24 - 13.84$ $C \Rightarrow 1/\sqrt{2} = 24/AC \Rightarrow PC$
	c. In 🛭			$AP \Rightarrow 1/\sqrt{3} = AB/24 \Rightarrow AB$
	m			OR
				the above question, AC
		nop includ 1 ⇒ AC = 2		-board. In ∆APC, tan 4
38.	(a) 25			
	(b) 11 (c) 3			
	11 TH y	.cor		OR
	11)	/ear		