केंद्रीय विद्यालय संगठन ,जयपुर संभाग KENDRIYA VIDYALAYA SANGATHAN JAIPUR REGION **PRACTICE PAPER : 2024-25**

सेट सं /SET No :-A

कक्षा/ Class: 10 विषय /SUBJECT- MATHS STANDRAD (041)

MARKSING SCHEME

QNo.	Answers	Marks
1	(D)	1
2.	A	1
3.	(C)	1
4.	С	1
5.	A	1
6.	(A)	1
7.	(A)	1
8.	(A)	1
9.	D	1
10.	(B)	1
11.	D	1
12.	(A)	1
13.	(A)	1
14.	(C)	1
15.	D	1
16.	A	1
17.	A	1
18.	С	1
19.	В	1
20.	(B)	1
21.	In $\triangle ABE$ and $\triangle ACD$ $AD = AE (\triangle ABE \cong \triangle ACD given)(1)$ $AB = AC (\triangle ABE \cong \triangle ACD given)(2)$ Now Consider $\triangle ADE$ and $\triangle ABC$ AD/AB = AE/AC [From equations (1) and (2)] and $\angle DAE = \angle BAC$ (Common angle) Thus, $\triangle ADE \sim \triangle ABC$ (SAS criterion)	1 1
22.	By comparing coefficients we have K= -3/2	1
23	Let a circle with centre O and external point P. Two tangents PQ and PR are drawn. To prove : PQ=PR Construction: Join radius OQ and OR also join O to P. Proof : In \triangle OQP and \triangle ORP OQ=OR (Radii) \angle Q= \angle R [Each 90°,radius \perp tangents)] OP=OP (Common side) $\therefore \triangle$ OQP $\cong \triangle$ ORP (RHS Congruence rule.)	1

	By CPCT PQ=PR Hence, proved.	
24.	The area accessible to the goat can be calculated using the area of a sector of a circle. The area of the garden the goat can access is a circular sector:	1
	Radius = 10 m; Rope length = 4 m, so the accessible area is $\pi \times 4^2 = 16\pi$ m ²	1
	The area accessible is 16π m ² , which equals approximately 50.285 m ² .	
	OR Radius (r_1) of 1 st circle = 8 cm Radius (r_2) of 2 nd circle = 6 cm Let the radius of 3 rd circle be <i>r</i> .	
	Area of 1 st circle $=\pi r_1^2 = \pi (8)^2 = 64\pi$	1
	Area of 2 nd circle $=\pi r_2^2 = \pi (6)^2 = 36\pi$ Given that,	
	Area of 3 rd circle = Area of 1 st circle + Area of 2 nd circle $\pi r^2 = \pi r_1^2 + \pi r_2^2$	
	$\pi r^2 = 64\pi + 36\pi$	
	$\pi r^2 = 100\pi$ $r^2 = 100$	1
	r = 100	
	However, the radius cannot be negative. Therefore, the radius of the circle having area equal to the sum of the areas of the two circles is 10 cm.	
25.	$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$	
	Taking $cos\theta$ common from numerator and denominator in LHS $\frac{1-tan\theta}{1+tan\theta} = \frac{1-\sqrt{3}}{1+\sqrt{3}}$	1
	Comparing both sides, $tan\theta = \sqrt{3}$	
	So $\theta = 60^{\circ}$	1
	OR	
	$\sin(A - B) = \frac{1}{2} \text{and} \cos(A + B) = \frac{1}{2}$ $\Rightarrow (A - B) = 20^{\circ} \text{and} (A + B) = 60^{\circ}$	
	\rightarrow (x - b) = 50° and (x + b) = 50° On subtracting, we get,	1
	$2B = 30^\circ \Rightarrow B = 15^\circ$ And A= 45	
		1

26.	Let $\sqrt{2} + \sqrt{3} = \frac{p}{a}$ where p and q are integers.	1/
	Then, $\sqrt{2} = \frac{p}{a} - \sqrt{3}$	1/2
	Squaring both sides:	
	$2=\frac{p^2}{r^2}-2.\frac{p\sqrt{3}}{r^2}+3$	
	Rearranging the terms gives a contradiction as one sides involve a	11/3
	rational number and other sides an irrational number($\sqrt{3}$).	172
	Thus $\sqrt{2} + \sqrt{3}$ is irrational.	
27.	Let the given polynomial be $p(x) = 4x^2 - 2x + (k-4)$	
	Given, α and $1/\alpha$ are zeros of the given polynomial	1
	($\alpha \times 1/\alpha$) =(k-4)/4	1
	\Rightarrow 1 = (k-4)/4	1
	$\Rightarrow 4 = (k - 4)$	1
	·· K = 0	
20		
28.	$\sin A - 2\sin^3 A$	
	$2\cos^3 A - \cos A$	
	$sin A(1-2sin^2 A)$	1
	$=\frac{1}{\cos A(2\cos^2 A-1)}$	•
	$= \frac{\sin A(\sin^2 A + \cos^2 A - 2\sin^2 A)}{\cos^2 A - 2\sin^2 A}$	1
	$\cos A(2\cos^2 A - \sin^2 A - \cos^2 A)$	
	$\sin A(\cos^2 A - \sin^2 A)$	
	$= \frac{\sin(\cos(2\pi - \sin^2 A))}{\cos A(\cos^2 A - \sin^2 A)}$	
	$=\frac{\sin A}{\sin A}=\tan A$	1
	cosA	

29.	Let the fixed charge for the first three days be Rs. A and the charge for	
	According to the information given.	
	A + 4B = 27(i)	1/2
	A + 2B = 21 (ii)	
	2B = 6	
	B = 3 (iii)	1
	Substituting $B = 3$ in equation (i) we get,	
	A + 12 = 27 A = 15	1
	A = 13	1
	Hence, the fixed charge is Rs. 15.	1/2
	And the Additional charge per day is Rs. 3.	
20	Latus consider Q as the centre point of the size	
30.	 Let us consider O as the centre point of the circle. Let P be a point outside the circle from which two tangents PA and 	
	PB are drawn to the circle which touches the circle at point A and	
	B respectively.	
	Draw a line segment between points A and B such that it subtends (AOB at control O of the circle)	
	The tangent at any point of a circle is always perpendicular to	
	the radius through the point of contact.	
	$\therefore \angle OAP = \angle OBP = 90^{\circ} Equation (i)$	1
	In a <u>quadrilateral</u> , the sum of interior angles is 360°.	
	$\angle OAP + \angle APB + \angle PBO + \angle BOA = 360^{\circ}$	
	Using Equation (i), we can write the above	1
	$90^{\circ} + 2APB + 90^{\circ} + 2BOA = 360^{\circ}$	
	$\therefore \angle APB + \angle BOA = 180^{\circ}$	
	Where,	1
	\angle APB = Angle between the two tangents PA and PB from external point	
	β	
	contacts at the centre.	
	OR	
	Joint: OA, OF, OE, OB and OC	
	BD = BF = 6 cm	
	CD = CE = 9 cm	
	$\therefore AB = AF + BF = x + 6 \dots (i)$	
	AC = AE + CE = x + 9(II)	
	$ \ln \Delta ABC, $	
	Area of $\Delta ABC = 54 \text{ cm}^2 \dots \text{[Given]}$	
	$ar(\triangle ABC) = ar(\triangle BOC) + ar(\triangle AOC) + ar(\triangle AOB)$	

$$\Rightarrow \frac{1}{2} \times BC \times OD + \frac{1}{2} \times AC \times OD + \frac{1}{2} \times AB \times OD$$

...[Area of $\Delta = \frac{1}{2} \times Base \times Height$
$$\Rightarrow \frac{1}{2} [AB + AC + BC] \times OD = 54$$

$$\Rightarrow \frac{1}{2} [x + 6 + x + 9 + 15] \times 3 = 54$$

...[From (i), (ii) & (iii)
$$\Rightarrow \frac{1}{2} [2x + 30] \times 3 = 54$$

$$\Rightarrow 6x + 90 = 108$$

$$\Rightarrow 6x = 18$$

$$\Rightarrow x = 3$$

$$\Rightarrow AB = x + 6 = 3 + 6 = 9 \text{ cm}$$

$$\Rightarrow AC = x + 9 = 3 + 9 = 12 \text{ cm}$$

$$\therefore AB = 9 \text{ cm}, AC = 12 \text{ cm}$$

31		1
51.	\mathbf{p} \mathbf{p} $(\mathbf{p}, \mathbf{p}) = 1$	1
	a) $P(even) = \frac{\gamma_2}{2}$	
	D) $P(>75) = \frac{1}{4}$	1
	c) $P(perfect cube) = 1/25$	
32.	Let the speed of the stream be x km/hr	
_	\therefore Speed of the boat upstream = (20 – x) km/br	
	and speed of the boat downstream $= (20 \pm x) \text{ km/hr}$	1
	Civon Distance - 48 km	1
	Given, Distance = 40 km	
	According to the Question,	
	$\frac{48}{-48} - \frac{48}{-48} = 1$	
	20 - x = 20 + x	
	49[20 + x - (20 - x)]	
	$\rightarrow \frac{46[20 + x - (20 - x)]}{40[20 + x - (20 - x)]} = 1$	
	\rightarrow (20 - x)(20 + x) - 1	
		1
	48[20 + x - 20 + x]	
	$\Rightarrow \frac{1}{400-x^2} = 1$	
	400 - 1	
	aa + aa + 2	
	$96x = 400 - x^2$	
	$\Rightarrow x^{2} + 96x - 400 = 0$	
	$\Rightarrow x^{2} + 100x - 4x - 400 = 0$	_
	$\Rightarrow x (x + 100) - 4 (x + 100) = 0$	2
	$\Rightarrow (x - 4) (x + 100) = 0$	
	$\Rightarrow x - 4 = 0 \text{ or } x + 100 = 0$	
	\rightarrow x = 4 or x = -100 [Rejecting negative value as the speed cannot be	
	\rightarrow x = 4 of x = -100[Rejecting negative value as the speed calling be	
	-ve	1
	\therefore Speed of the stream = 4 km/nr	•
	•-	
	OR	
	Let the duration of the flight be x hours.	
	According to the given,	
	(600/x) - [600/(x + 1/2) = 200	
	(600/x) - [1200/(2x + 1)] = 200	2
	[600(2x + 1) - 1200x]/[x(2x + 1)] = 200	
	(1200x + 600 - 1200x)/[x(2x + 1)] - 200	
	(1200x + 000 - 1200x)/[x(2x + 1)] = 200	
	y(2x + 1) = 2	1
	x(2x + 1) = 3	-
	$2x^{2} + x - 3 = 0$	1
	$2x^2 + 3x - 2x - 3 = 0$	I
	x(2x + 3) - 1(2x + 3) = 0	
	(2x+3)(x-1) = 0	
	2x + 3 = 0, x - 1 = 0	
	x = -3/2, x = 1	
	Time cannot be negative.	
	Therefore, $x = 1$	
	Hence the original duration of the flight is 1 hr	1

33.	a) Prove bpt the	eorem.			
				1	
	OR				
	ΔABC ~ ΔPQR			1	
	AB	\underline{BC} \underline{AC}			
	PQ	QR = PR			1
	or, $\frac{z}{3}$	$=\frac{8}{6}=\frac{4\sqrt{3}}{y}$			I
		$=\frac{8}{7}$ and $\frac{8}{7}=\frac{1}{7}$	$4\sqrt{3}$		
	3	6 6	y E		
	or,	$x = \frac{8 \times 3}{6}$ and $y =$	$\frac{4\sqrt{3}\times 6}{8}$		
	$\therefore \qquad z = 4 \text{ and } y = 3\sqrt{3}$				
	$\therefore \qquad y+z=3\sqrt{3}+4$				
34.	The volume V o	of the origina	I cone is given by:		5
	. 1 . 1	. 2	2		
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}$	$\pi 4^2(9) = 48\pi$	t cm ³		
	Volume of the s	maller cone:			
	Radius: 2cm. h	eight= 4.5cm	(half of original)		
	$V_{\text{small}} = \frac{1}{3}\pi 2^2 (4.5) = 6\pi \ cm^3$				
	Remaining Volume:				
	$V_{\text{remaining}} = V - V_{\text{small}} = 48\pi - 6\pi = 42\pi cm^3$				
	CSA of the remaining cone:				
		$-\alpha l = (A) \sqrt{C}$	$\sqrt{1-\sqrt{4^2+0}}$	$\frac{1}{2}$ — $\sqrt{07}$	
35.		$\pi r \iota = \pi(4)\sqrt{9}$	$\frac{67}{1} (\div l = \sqrt{4^2 + 9})$	$\frac{1}{2} = \sqrt{97}$	
	Class	Frequency	Cumulative Frequency		
	65-85	4	4		
	85-105	x	4 + x		
	105-125	20	17+ X		
	145-165	14	51+ x		
	165-185	v	51 + x + y		
	185-205	4	55 + x + y		
	Median class is "125-14	45." cf = 17 + x ,	l = 125 , f = 20 h = 20, N = 68	1	
	Median = 1 + $\left(\frac{\frac{\partial P}{\partial r} - \alpha f}{p}\right) \mathbf{x} \mathbf{h}$				
	$\Rightarrow 137 = 125 + (\frac{384 - 134 - 13}{20}) \times 20$				
	$\Rightarrow 137 - 125 = 17 - x$ $\Rightarrow x = 17 - 12 = 5 \Rightarrow 55 + 5 + y = 68 \Rightarrow y = 8$				
	$\rightarrow x = x = 12 = 0 \Rightarrow 00 \pm 0 \pm y = 00 \Rightarrow y = 0$				

36.	a) $AB = \sqrt{73}$ and $BC = \sqrt{104}$	1 1
	b) AC = $\sqrt{(8-2)^2 + (-4-3)^2} = \sqrt{85}$	
	d) M(5, -0.5) Or	2
	Coordinates of Centroid = $\left(\frac{20}{3}, \frac{5}{3}\right)$	
37.	a) Using $tan\theta = \frac{opposite}{adjacent} = \frac{6m}{6m}$ $tan\theta = 1$, so $\theta = 45^{\circ}$.	1
	b) New height = 6 + 2 = 8 meters. So $tan\theta = \frac{8}{x}$ and $\theta = 60^{\circ}$, since the angle of elevation is 60° .	1
	$tan60^\circ = \sqrt{3} = \frac{3}{x} \Longrightarrow x = \frac{3}{\sqrt{3}} = \frac{3\times\sqrt{3}}{3} \approx 4.61 \text{ meters.}$	2
	c) Using $tan30^\circ = \frac{h}{6}$	
	$\frac{1}{\sqrt{3}} = \frac{h}{6} \implies h = \frac{1}{\sqrt{3}} = 2\sqrt{3} \text{ meters}$ Thus The height of the roof from thr ground = 6+ $2\sqrt{3}$ = 6+ 3.46=	
	9.46m	
	UR	
	When base is same for both towers and their heights are given, i.e., x and y respectively.Let the base of towers be k.	
	$\tan 30^\circ = \frac{x}{k}, \qquad \qquad \tan 60^\circ = \frac{y}{k}$	
	$x = k \tan 30^\circ = \frac{\kappa}{\sqrt{3}} \dots (i) y = k \tan 60^\circ = k\sqrt{3} \dots (ii)$	
	From equations (i) and (ii),	
	$\frac{x}{y} = \frac{\frac{k}{\sqrt{3}}}{k\sqrt{3}} = \frac{k}{\sqrt{3}} \times \frac{1}{k\sqrt{3}} = \frac{1}{3} = 1:3$	
38.	a) Annual increase = 20	1
	By the fifth year, the number of wooden chairs produced will be : $150+(5-1) \times 20 = 150+80= 230$ chairs.	
	b) Annual increase = 30 chairs. Solving for the number of years: $250 + (n \cdot 1) \times 20 = 400$	1
	(n-1) $\times 30 = 400$ (n-1) $\times 30 = 150$ n-1 = 5	
	n= 6 Therefore, the production will reach 400 chairs in the 6 th year.	
	 c) sum of plastic chairs produced over 4 years: 250+280+310+340 = 1180 chairs sum of wooden produced over 4 years: 150+170+190+210 =72 0 chairs Overall total chairs = 720 + 1180 = 1900 chairs. 	2
	OR	

203, 210, 217,, 497 Here a = 203, d = 210 – 203 = 7, an = 497	
∴ a + (n – 1) d = an	
203 + (n - 1) 7 = 497	
(n - 1) 7 = 497 - 203 = 294	
$n - 1 = 2947 = 42 \therefore n = 42 + 1 = 43$	
\therefore There are 43 natural nos. between 200 and 500 which are divisible by 7.	