अनुक्रमांक / ROLL NO

सेट / SET: A

केंद्रीय विद्यालय संगठन, जयपुर संभाग KENDRIYA VIDYALAYA SANGATHAN ,JAIPUR REGION PRACTICE PAPER : 2024-25 कक्षा / CLASS : 10

विषय / SUB: MATHEMATICS STANDARD (कोड / CODE : 041) अधिकतम आवधि / Time Allowed: 3 Hours अधिकतम अंक/ Maximum Marks: 80

आधकतम आवाध / Time Allowed: 3 Hours आधकतम अक/ Maximum Ma सामान्य निर्देश / General Instructions:

Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no.
 19and 20 are Assertion- Reason based questions of 1 mark each.
- **4.** In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 markseach.
- 5. In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- **7.** In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice in 2 Question of Section B, 2 Questions of Section C and 2 Questions of Section D has been provided. An internal choice hasbeen provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- **10.** Take π =22/7 wherever required if not stated.
- **11.** Use of calculators is not allowed.

	Section A						
S.NO	Section A consists of 20 questions of 1mark each.						
•							
1	Which one of the following venn diagram is the correct depiction of the relationship between rational, irrational and real numbers?						
	a) () ()						
2	What is the quadratic polynomial whose sum and the product of zeroes is $\sqrt{2}$, $\frac{1}{3}$ respectively?	1					
	(a) $3x^2 - 3\sqrt{2x} + 1$ (b) $3x^2 + 3\sqrt{2x} + 1$						
	(c) $3x^2 + 3\sqrt{2x} - 1$ (d) None of the above						
3	If -1 and 5 are the zeroes of quadratic polynomial $x^2 + (q-3)x + p$, then p	1					
	(a) $-5,-2$ (b) $5,8$ (c) $-1,-5$ (d) $2, 6$						
4	The pair of equations given by $y + 2x = 8$ and $2x + 4y - 16 = 0$ represents	1					
	two lines which are: (a) parallel						
	(c) intersecting at exactly one point. (d) intersecting at exactly two points						
5	The distance between the points $(2, -3)$ and $(-3, 2)$ is	1					
	(a) $5\sqrt{2}$ units (b) $\pm 5\sqrt{2}$ units (c) 50 units (d) ± 50 units						
6	If $\triangle ABC \sim \triangle DEF$ and $AB = 6$ cm, $BC = 7$ cm, $CA = 8$ cm and $DE = 12$ cm, then perimeter of $\triangle DEF$ is:	1					
	(a) 42 cm (b) 35 cm (c) 25 cm (d) 30 cm						
7	$sin^2A + cos^2A = 1$ is true when A is equal to:						
/	(a)any angle (b) 90° (c) 0° (d) 45°	1					
0	Value of $\frac{1}{\sqrt{2}}cos45^{\circ}(1 + tan^245^{\circ})$ is equal to:	1					
0	(a) $\sin 90^{\circ}$ (b) $\cos 90^{\circ}$ (c) $\tan 30^{\circ}$ (d) $\sin 45^{\circ}$						
	In the given figure, TP and TQ are tangents drawn to the circle with centre at O.						
9	If $\angle POQ = 115^{\circ}$ then $\angle PIQ$ is:						
	O 115° Q	1					
	(a) 115° (b) 57.5° (c) 55° (d) 65°						

10	If $\triangle PQR \sim \triangle$	f \triangle PQR~ \triangle XYZ is such that PQ=4cm and XY= 8cm and the perimeter of \triangle PQR is							
10	(a) 36cm	(b) 48cm	12.	(c) 42	2cm	(d) 32cm		
11	LCM of smallest prime and smallest composite number is:								
	(a) 1 (b) 2 (c) 3 (d) 4								
12	If the areas of two circles are in ratio 16:25, then the ratio of their radii is:								
12	(a) 4 :5 (b) 5 :4 (c) 25:16 (d) 2:3								
13	If the surface areas of two spheres are in ratio 4 : 9, then the ratio of their volumes is:								
	(a) 8 : 27	(b) 16:25		(c) 2 :	: 3	(c	l) 9 :4		
	The media	n and mode of a dis	stribution	are 14 and	d 16, resp	ectively.	The value of		
14.	(a) 17	: (b) 18		(c) 13		(0	d) 15	1	
		ζ,				,	,		
15	If the circum	nference of a circle	increases	s from 2π	to 4π the	n its area	becomes	1	
		(h) Deve	1	(a) Th		(_			
	(a) ⊓ali	(מווסס (מ)	le	(C) 11	free times	s (a) Four times		
16	16 For the following distribution :							1	
		Class	0 - 5	5 -10	10-15	15-20	20 - 25		
		Frequency	11	28	24	18	19		
	the upper	limits of the modal	class is						
	(a)10	(b) 15		(c) 20		(d)	25		
	A card is se	lected at random fr	om a well	shuffled	deck of 52	2 cards. T	he probability		
17	of its being a black coloured face card is $(2)^{3}$							1	
	(a) $\frac{1}{26}$	(a) $\frac{1}{26}$ (b) $\frac{1}{13}$ (c) $\frac{1}{13}$ (c)							
	If 4sin ² θ - 3:	= 0, then θ is equal	to						
18	(a)30°	(b) 45	0	(c) 60° (d) 90°) Q()°	1	
	(4)00								
	Direction for statement of the correct of	or questions 19 & f Assertion (A) is fo option.	20: In que	estion nur a statem	nbers 19 ent of Re	and 20, a ason (R).	Choose		
	Assertion(A): The centroid of	a triangle	divides e	ach media	an in the r	atio 2:1		
19	Reason(R) : The centroid is the point where the medians intersect.								
	(a) Both Assertion (A) and Reason(R) are true and Reason(R) is the								

		correct explanation of Assertion (A).				
		correct explanation of Assertion (A).				
		(c) Assertion (A) is true but Reason(R) is false.				
_		(d) Assertion (A) is false but Reason(R) is true.				
	20.	Assertion(A): If product of two numbers is 360 and their HCF is 12, then their LCM is 30.				
		Reason (R): The HCE and I CM of two numbers is always same	1			
		(a) Both Assertion (A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion (A).				
		(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct				
		explanation of Assertion (A).				
		(c) Assertion (A) is true but Reason(R) is false.				
		(d) Assertion (A) is false but Reason(R) is true.				
		SECTION B				
-		Section B consists of 5 questions of 2 marks each.				
-		· · · · · · · · · · · · · · · · · · ·				
	21.	In the given figure, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.	2			
		в				
	22.	Find the value(s) of <i>k</i> so that the pair of equations $3x - 2y = 7$ and $kx + y = 5$ has no solution.	2			
	23	Prove that the lengths of two tangents drawn from an external point to a circle are equal.	2			
	24	A goat is tethered at a point on the boundary of a circular garden with a radius of 10 m by a rope that is 4 m long. Calculate the area of the garden that the goat can access for grazing.	2			
		OR The radii of two circles are 8 cm and 6 cm, respectively. Find the radius of circle having area equal to the sum of the areas of the two circles.				
		Find an acute angle θ when $\frac{\cos\theta - \sin\theta}{\sin\theta} = \frac{1 - \sqrt{3}}{3}$				
	25	$\cos\theta + \sin\theta = 1 + \sqrt{3}$	2			
			2			
		If sin (A - B) = $\frac{1}{2}$ and cos (A+B) = $\frac{1}{2}$, 0°< A+B ≤ 90° and A> B, then find the				
		measures of angles A and B.				
╞						
╞		SECCTION C				
╞		Section C consists of 6 questions of 3 marks each.				
	26.	Prove that $\sqrt{2} + \sqrt{3}$ is an irrational number.	3			

27	If α and $\frac{1}{\alpha}$ are the zeros of the polynomial $4x^2 - 2x + (k - 4)$, find the value of k	3					
28	Prove the following: $\frac{\sin A - 2 \sin^3 A}{2 \cos^3 A - \cos A} = \tan A$	3					
29	A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs.27 for a book kept for seven days, while Susy paid Rs.21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.	3					
30	Prove that- the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.						
	OR In the figure, a \triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively 6 cm 9 cm of lengths 6 cm and 9 cm. If the area of \triangle ABC is 54 cm ² , then find the lengths of sides AB and AC.	3					
31	 A box contains 100 discs numbered from 1 to 100. If one disc is drawn at random, find the probability that it bears: (i) An even number. (ii) A number greater than 75. (iii) A perfect cube number. 	1 1 1					
	SECTION D						
	Section D consists of 4 questions of 5marks each.						
32	A motor boat whose speed is 20 km/h in still water, takes 1 hour more to go 48 km upstream than to return downstream to the same spot. Find the speed of the stream.	5					
	OR						
	In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced by 200 km/hr and the time of flight increased by 30 minutes. Find the original duration of the flight.						
	 a) Prove that -If a line is drawn parallel to one side of a triangle, it divides the other two sides proportionally. 						
33	b) In the figure $\triangle ABC \sim \triangle PQR$, find value of <i>y</i> + <i>z</i> .	3+2					

				R 3	6	z	8		
				Р	30° { Y	≻ _{q A} ∟	<u>30</u> °∕ 4√3	В	
35.	The median frequency is	of the follo 68.	wing data	is 137. Fi	nd the val	ues of x a	nd y, If the	total	5
	Class Intervals	65-85	85-105	105- 125	125- 145	145- 165	165- 185	185-205	5
	Frequenc y	4	x	13	20	14	у	4	
				SECT	ON E				
36	The students of Class X are designing a playground for their school in the shape of a quadrilateral plot. The coordinates of the playground are marked as A(2,3), B(10,6), C(8,-4) and D(3,-6). They want to divide the playground into triangular sections and assign each group of students to work on one section.								
	Answer the following questions: (i) Using the distance formula, calculate the lengths of sides AB and BC to help students plan their triangular sections. 1							1	
	(ii) Calculate the distance between diagonally opposite points A and C.							1	
	(iii) Find the coordinates of the midpoint of line segment AC.								
			P	OR					2
	Find the coordinates of the centroid of triangle .								
37	local park. The meters tall. The safe and state height from v specific angle	hey want hey want ble, so the hich they to reach	to build use is desi to ensure by decide to need to lo the treeho	gned to be the structu o calculate ower a lade ouse.	e in a e 6 ure is e the der at a				
	(i) If t me tre lac the	ney positi ters away ehouse, v der make top of the	on the bas / from the /hat angle with the g e treehous	e of the la base of th should the round to r e?	dder 6 e e each				1
	(ii) If they want to extend the ladder's reach by 2 meters, how far from the base of the treehouse should the new position of the ladder be placed if angle is 60° ? ($\sqrt{3} = 1.73$)					1			
	(iii) If the treehouse has a roof slanting at an angle of elevation of 30°, what will be the height of the roof from the ground? ($\sqrt{3} = 1.73$)						2		
	If the	tops of tw	vo tree ho	uses of he	ight x and	ly, subter	nd angles o	of elevation	

	of 30° and 60° respectively at the centre of the line joining their feet on level of ground, then find $x : y$.				
38	 A company manufactures two types of chairs: wooden and plastic. In the first year, they produced 150 wooden chairs and 250 plastic chairs. The production of wooden chairs increases by 20 each year, while the production of plastic chairs increases by 30 each year. They want to analyze: (i) How many wooden chairs will be produced in the fifth year? (ii) In which year will the production of plastic chairs reach 400? (iii) What is the total production of both types of chairs over the first four years? OR How many natural numbers are there between 200 and 500, which are divisible by 7? 	1 1 2			