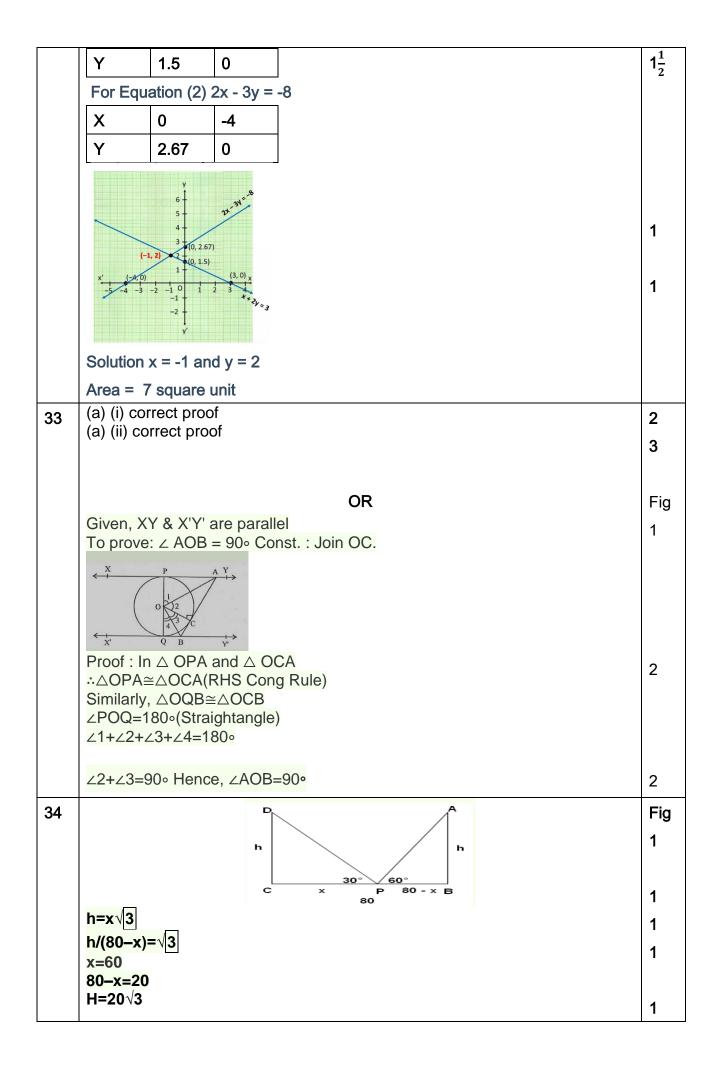
केंद्रीय विद्यालय संगठन ,जयपुर संभाग KENDRIYA VIDYALAYA SANGATHAN JAIPUR REGION पूर्व -बोर्ड / Pre-Board Examination-1st : 2024-25

े सेट सं /SET No :- A

कक्षा/ Class: 10 विषय /SUBJECT- MATHS BASIC (241)


	SECTION A	1
1	(c) Atmost 2	1
2	(a) k=10	1
3	(c) (0, 0)	1
4	(a) 3	1
5	(c) 2	1
6	(d)π	1
7	(b) quadratic	1
8	(d) 9π cm2	1
9	no change	1
10	(b) 4	1
11	(c) √5/2	1
12	(a) two cones and a cylinder	1
13	(b) 25	1
14	(a) 22/46	1
15	(b) 50°	1
16	(c) 45°	1
17	(d) Cyclic Quadrilateral	1
18	(A) $\frac{4}{7}$	1
19	A)Both assertion (A) and reason(R) are true and reason (R) is the	1
	correctexplanation of assertion	
20	D)Assertion (A) is false but reason (R) is true.	1
	SECTION B	
21	Let two points be A (x_1, y_1) and B (x_2, y_2) . P (x, y) divides internally the line	
	joining A and B in the ratio m1: m2.	
	Let $x_1 = -1$, $y_1 = 7$, $x_2 = 4$ and $y_2 = -3$, $m = 2$, $n = 3$	
	By Section formula, P (x, y) = $[(mx_2 + nx_1 / m + n), (my_2 + ny_1 / m + n)] - (1)$	
	By substituting the values in the equation (1)	
	$x = [2 \times 4 + 3 \times (-1)] / (2 + 3)$ and $y = [2 \times (-3) + 3 \times 7] / (2 + 3)$	

	x = (8 - 3) / 5 and $y = (-6 + 21) / 5$	1
	x = 5/5 = 1 and y = 15/5 = 3	
	Therefore, the coordinates of point P are (1, 3).	
		1
22	i)Total number of outcomes =36	
	The favorable outcomes are=	
	[(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)]	
	Total number of favorable outcomes=9	
	Probability of getting doublet =6/36=1/6	1
	ii) Favourable outcome = $\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ Number of	
	favourable outcomes = 6	
	Number of possible outcomes = 36	
	Probability = number of favourable outcomes / number of possible outcomes	
	Probability of getting a sum of $7 = 6/36 = 1/6$	
	Therefore, the probability of getting the sum of 7 on the dice is 1/6.	1
	OR	
	Probability = Number of possible outcomes/Total number of favorable	
	outcomes.	
	P (E) + P (not E) = 1	
	Number of red balls in a bag = 5	
	Number of white balls in a bag = 8	
	Number of green balls in a bag = 4	
	Total number of balls = $5 + 8 + 4 = 17$	
	(i) Probability of drawing red ball = 5/17	1
	(ii) Probability of drawing a green ball = $4/17$	
	Let the probability of not getting a green ball be P (not E)	
	P (not E) = 1 - P (E)	1
	= 1 - 4/17=13/17	
23	HCF (a,b)×LCM (a, b) =a×b.	2
	9×LCM=306×657	
	LCM=306 X 657/9 = 22338	
	LCM of 306 and 657 is 22338	
	OR	

Pi	rime factorization of 144, 180, and 192 is $(2 \times 2 \times 2 \times 2 \times 3 \times 3) = 2^4 \times 3^2$,					
(2	$2 \times 2 \times 3 \times 3 \times 5$) = $2^2 \times 3^2 \times 5^1$, and $(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3) = 2^6 \times 3^1$					
re	espectively. LCM of 144, 180, and $192 = 2^6 \times 3^2 \times 5^1 = 2880$.	2				
H	ence, the LCM of 144, 180, and 192 by prime factorization is 2880.					
24	$=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$	1				
	$=\frac{\frac{5}{4} + 4 \times \frac{2 \times 2}{\sqrt{3} \times \sqrt{3}} - 1}{\frac{1}{4} + \frac{\sqrt{3} \times \sqrt{3}}{2 \times 2}}$					
	$=\frac{\frac{5}{4}+\frac{16}{3}-1}{\frac{1}{4}+\frac{3}{4}}$					
so	-					
<u>5c</u>	$\frac{\cos^2 60^\circ + 4 \sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ} = 67/12$	1				
25 Di	istance Formula = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$					
Q	e (0, 1) is <u>equidistant</u> from P (5, - 3) and R (x, 6). So, PQ = QR					
√($(5 - 0)^2 + (-3 - 1)^2 = \sqrt{(0 - x)^2 + (1 - 6)^2}$	1				
√($\sqrt{(5)^2 + (-4)^2} = \sqrt{(-x)^2 + (-5)^2}$					
B	y squaring both the sides, $25 + 16 = x^2 + 25$					
X	$=\pm4$	1				
	SECTION C					
26 Fi	ull marks for correct proof	3				

27	in $\triangle ABC$ DE AC BD/AD = BE/EC(i) In $\triangle ABE$ DF AE BD/AD = BF/FE(ii) BD/AD = BE/EC = BF/FE	1 ¹ / ₂
	Thus, BE/EC = BF/FE OR In $\triangle ABCand \triangle AMP$	$1\frac{1}{2}$
	In $\triangle ABC$ and $\triangle AMP$ $\angle ABC = \angle AMP$ (; both the angles are equal to 90°) $\angle BAC = \angle PAM$ (Each = $\angle A$) $\Rightarrow \triangle ABC \sim \triangle AMP$ (By AA similarity criteria) Step 2: To prove the condition $\frac{CA}{PA} = \frac{BC}{MP}$ As $\triangle ABC \sim \triangle AMP$ and corresponding sides of similar triangle are in same ratio. CA = BC	$1\frac{1}{2}$
	$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$ Hence it is proved that $\triangle ABC \sim \triangle AMP$ and $\frac{CA}{MP} = \frac{BC}{MP}$	$1\frac{1}{2}$
28	first number x. Then, the second number is $x + 2$ x(x + 2) = 143 $x^{2} + 2x - 143 = 0$	1/2 1/2 1/2
	x = 11, x = -13 11 and 13 -11 and -13	1/2 1/2 1/2
29	Let the roots of the polynomial $2x^2-5x-3$ be denoted by r_1 and r_2 . According to Vieta's formulas, we have:	1
	$r_1 + r_2 = -\frac{-5}{2} = \frac{5}{2}$ $r_1 r_2 = \frac{-3}{2}$	1
	The roots of the polynomial $x^2 + px + q$ are double the values of r_1 and r_2 . Thus, we can denote the roots of $x^2 + px + q$ as $2r_1$ and $2r_2$.	$\frac{1}{2}$
	Using Vieta's formulas for the polynomial $x^2 + px + q$, we have:	
	$2r_1 + 2r_2 = -p$ $(2r_1)(2r_2) = q$	1/2

	1. The sum of the roots:						
	$2r_1 + 2r_2 = 2(r_1 + r_2) = 2 \cdot \frac{5}{2} = 5$						
	Z Thus, we have:						
	$-p=5\implies p=-5$						
	2. The product of the roots:						
	$(2r_1)(2r_2) = 4(r_1r_2) = 4 \cdot \frac{-3}{2} = -6$						
	Thus, we have:						
	q = -6						
	In summary, the values of p and q are:						
	_5 and _6						
30	Correct proof	3					
31	i) Length of the Arc = $\theta/360^\circ \times 2\pi r$						
	= 60°/360° × 2 × 22/7 × 21 cm = 22 cm						
	ii)Area of the sector, AOBP = $\theta/360^{\circ} \times \pi r^2$						
		1½					
	$= 231 \text{ cm}^2$						
	OR						
	UK						
	Area of the sea over which the shins are warned						
	Area of the sea over which the ships are warned						
	= Area of the sector.						
	$\frac{1}{1}$						
	=2/9×3.14×(16.5)2 km2 = 189.97 km ²						
	SECTION D						
32	(a) (i)Let the present age of Nuri = x						
	And, the present age of Sonu = y	1					
	$x - 3y = -10 \dots (i)$						
	$x - 2y = 10 \dots$ (ii) age of Nuri = 50 years and age of Sonu = 20 years.	1					
	age of Null = 50 years and age of Sonu = 20 years.						
	(ii) x+y=180(i)	1					
	<u>v-v-19 (ii)</u>	1					
	x-y=18(ii) x=99,y=81	1					
	OR						
	$x + 2y = 3 \dots (1) 2x - 3y = -8 \dots (2)$						
	For Equation (1) $x + 2y = 3$						
	X 0 3	$1\frac{1}{2}$					

Class Intervo	I Frequency	Cumulative frequenc	y		
0 - 10	5	5			
10 - 20	x	5 + x			
20 - 30	20	25 + x			
30 - 40	15	40 + x			
40 - 50	y	40 + x + y			
50 - 60	5	45 + x + y			
N=60					
45 + x +	y = 60 x +	y = 15(i)			
28.5 = 20) + [(60/2 -	(5 + x))/20] ×	10		
x = 8 y	= 7				
		OR			
		ÖN			
		lass erval	Frequency	Cumulative frequency	
	117.5 -	- 126.5	3	3	
	126.5 -	- 135.5	5	8	
	135.5 -	- 144.5	9	17 (c)	
	144.5 -	- 153.5	12 (f)	29	
	153.5 -	- 162.5	5	34	
	162.5 -	- 171.5	4	38	
	171.5 -	- 180.5	2	40	
ļ			<i>n</i> = 40		
		$\therefore \frac{n}{2} = \frac{4}{2}$	-		
			aximum free 1.5 – 153.5).	quency, so the	8
			12, cf = 17 a	and $h = 9$	
Media	. ($\left(\frac{\frac{n}{2}-cf}{f}\right) \times h$			
	= 144.5	$5 + \left(\frac{20 - 12}{12}\right)$	$\left(\frac{7}{2}\right) \times 9$		
		0			
	= 144.5		146.75 mm.		

		SECTION E		
36	i)	d = 200 & a = 1200	1	
	ii)	$t_{12} = 3400$	1	
	iii)	Sn = n/2 [2a + (n − 1)d	2	
		S10 = 5 x 4200 = 21000		
		OR		
		Sn = n/2 [2a + (n − 1)d] = 31200		
		n= 13		
37	(i)- $\triangle ABM$ and $\triangle CDM$, AA Criterion.			
	(ii) 3cm	1	1	
	(iii) 18cm			
	OR			
	60 ⁰			
38	(a) 4.71m ²		1	
	(b) 1.57 m ²			
	(c) 0.0924 m ²			
		OR		
	2.64 m ²			