KENDRIYA VIDYALAYA SANGTHAN TINSUKIA REGION PRE BOARD EXAMINATION 2024-25 CLASS: XII

SUBJECT: -MATHEMATICS (041) SET 02

Time: - 3 Hours

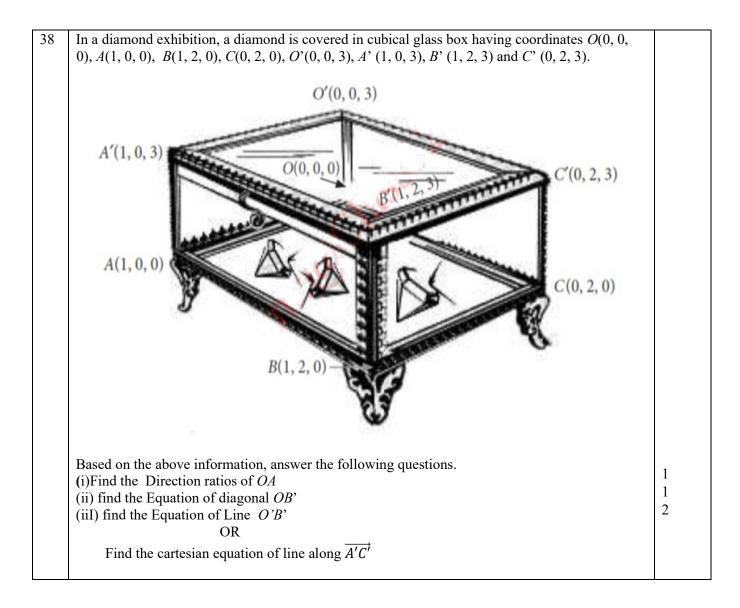
Max Marks: - 80

General Instructions:

- 1. This Question paper contains five sections **A**, **B**, **C**, **D** and **E**. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section **D** has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Q	<u>SECTION – A (MCQs 1 mark each)</u>	Marks
1	The number of all possible matrices of order 3×3 with each entry 0 or 1 is:(a) 27(b) 18(c) 81(d) 512	1
2	If A = [a_{ij}] is a symmetric matrix of order n, then (a) $a_{ij} = \frac{1}{a_{ij}}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j (c) $a_{ij} = a_{ji}$ for all i,j (d) $a_{ij} = 0$ for all i, j	1
3	Let A be a non-singular square matrix of order 3×3 and $ adj A = 8$ then $ A $ is equal to (a) ± 64 (b) ± 16 (c) ± 8 (d) none of the these	1
4	The area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq. units. The value of k will be (a) 3 (b) ± 3 (c) -3 (d) 6	1
5	If A and B are invertible matrices, then which of the following is not correct? (a) $adj A = A $. A^{-1} (b) $det(A)^{-1} = [det (A)]^{-1}$ (c) $(AB)^{-1} = B^{-1} A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$	1
6	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at (a) 4 (b) -2 (c) 1 (d) 1.5	1
7	(a) 4(b) - 2(c) 1(d) 1.5Differential coefficient of sec $(\tan^{-1}x)$ w.r.t. x is(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	1
8	The rate of change of the area of a circle with respect to its radius r at $r = 6$ cm is (a) 10π (b) 12π (c) 8π (d) 11π	1
9	On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ decreasing? (a) (0,1) (b)($\frac{\pi}{2},\pi$) (c)($0,\frac{\pi}{2}$) (d) None of these	1
10	$\int \frac{dx}{\sin^2 x \cos^2 x} \text{ is equal to}$	1
	(a) $\tan x + \cot x + c$ (b) $\sin x + \cos x + c$ (c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$	

11	The value of $\int_{a}^{-a} \sin^3 x dx$ is			1
		(c) 1	(d) 0	
12	(a) a(b) a/3The degree of the differential equation			1
	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is}$			
	(a) 3 (b) 2	(c) 1	(d) not defined	
13	(a) 3 (b) 2 A homogeneous differential equation of the substitution.	e from $\frac{dy}{dx} = h\left(\frac{x}{y}\right)$ car	n be solved by making the	1
		(c) $x = vv$	(d) $x = v$	
14	(a) $y = vx$ (b) $v = yx$ If \vec{a} is nonzero vector of magnitude 'a' an	$\frac{(0) \lambda}{d \lambda}$ is a nonzero scalar	then $\lambda \vec{a}$ is unit vector if	1
	(a) $\lambda = 1$ (b) $\lambda = -1$ The coordinates of the foot of the perpendit	(c) $a = \lambda $	(d) $a = \frac{1}{ \lambda }$	
15	given by			1
16	(a) (2, 0, 0) (b) (5, 0, 0) The feasible solution for a LPP is shown	(c)(7,0,0)	(d) (0, 5, 7)	1
16		Ŷ		1
	in given figure. Let $Z = 3x-4y$ be the		(4,10)	
	objective function. Minimum of Z occurs a	at (0, 8)	•(6, 8)	
	a) (0,0)			
	b) (0,8)		(6, 5)	
	c) (5,0)			
	d) (4,10)	(0,0)	(5,0) >	
17	Inconsticution y y < 0 moments			1
17	Inequation $y - x \le 0$ represents (a) The half plane that contains the pos	itive V evic		1
	(a) The han plane that contains the pos(b) Closed half plane above the line y =		itive Y-axis	
	(c) Half plane that contains the negative	-		
	(d) None of these			
18	If A and B are two events such that P(A) +	P(B) - P(A and B) = I	P(A), then	1
	(a) $P(B/A) = 1$ (b) $P(A/B) = 1$	1 (c) P(A	A/B) = 0 (d) $P(B/A) = 0$	
	ASSERTION-R	EASON BASED QUI	ESTIONS	
In tl	ne following questions, a statement of assert	-		oose the
corre	ect answer out of the following choices.	.,		
(a)	Both A and R are true and R is the con Both A and B are true but B is not the	A		
(b) (c)	Both A and R are true but R is not the A is true but R is false.	e correct explanation	01 A.	
(\mathbf{c}) (\mathbf{d})	A is false but R is true.			
19	A: The Principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) +$	$2 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is equal	to $\frac{5\pi}{4}$	1
	R : Domain of $\cos^{-1} x$ and $\sin^{-1} x$ are resp	-	-	


20	A: The following straight lines L ₁ & L ₂ are perpendicular to each other. $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$ R: Let line L ₁ passes through the point (x_1, y_1, z_1) and parallel to the vector whose direction ratios are a_1 , b_1 , and c_1 , and let line L ₂ passes through the point (x_2, y_2, z_2) and parallel to the vector whose direction ratios are a_2 , b_2 , and c_2 , \cdot Then the lines L ₁ & L ₂ are perpendicular if $a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2 = 0$	1
	$\frac{\text{SECTION} - B}{\text{ECTION} - B}$	
21	This section comprises of very short answer type-questions (VSA) of 2 marks each. Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is	2
21	transitive.	
22	Find $\frac{dy}{dx}$ of the function $y^x = x^y$ or	2
	Find the values of k so that the function f is continuous at the indicated point	
	$f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases} \qquad \text{at } x = \pi$	
23	$f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases} \qquad \text{at } x = \pi$ Evaluate $\int \left[\frac{(x+1)(x+\log x)^2}{x}\right] dx$	2
24	Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 16$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{x^2}{25}$	2
	$\frac{y^2}{y^2} = 1$.	
25	If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$.	2
	<u>SECTION C</u> (This section comprises of short answer type questions (SA) of 3 marks each)	1
26	If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	3
27	Evaluate: $\int \sqrt{1+3x-x^2} dx$	3
	OR Evaluate: $\int_0^1 (xe^x + \sin\frac{\pi x}{4}) dx$	
28	The area between $x = y^2$ and $x = 4$ is divided into two equal parts by the line $x = a$, find the value of <i>a</i> .	3
29	Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ OR Solve the differential equation $x \frac{dy}{dx} + 2y = x^2$; $(x \neq 0)$	3
	dx + 2y + x + y + y	
30	Solve the following Linear Programming Problem graphically:	3

P a g e 3 | 6

	Maximize $Z = 5x + 2y$,	
	subject to the constraints:	
	$x - 2y \le 2,$	
	$3x + 2y \le 12$,	
	$-3x + 2y \le 3,$	
	$x \ge 0$, $y \ge 0$.	
31	An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black? OR	3
	The random variable X has a probability distribution P(X) of the following form, where k is some number: $ \begin{pmatrix} k, & \text{if } x = 0 \\ 2k, & \text{if } x = 1 \end{cases} $	
	$P(X) = \begin{cases} k, & if \ x = 0\\ 2k, & if \ x = 1\\ 3k, & if \ x = 2\\ 0, & otherwise \end{cases}$	
	 (a) Determine the value of <i>k</i>. (b) Find P (X < 2), (c) Find P (X≥2), 	
	<u>SECTION D</u>	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	-
32	Show that the function f: R \rightarrow R defined by f(x) = $\frac{x}{x^2+1}$, $\forall x \in R$ is neither one-one nor onto. OR If N denotes the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c,	5
	d), if $ad(b + c) = bc(a + d)$. Show that R is an equivalence relation.	
33	Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of equations $x - y + z = 4$, x - 2y - 2z = 9 2x + y + 3z = 1.	5
34	Evaluate $\int \frac{1}{\cos(x-a)\cos(x-b)} dx$ OR OR	5
	Evaluate $\int_0^{\frac{\pi}{2}} \log \sin x dx$.	
35	Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ OR	5
	Find the vector equation & cartesian equations of the line which is perpendicular to the lines with equations $x + 2 + y = 3 + z + 1 + z = 1 + y = 2 + z = 3$	
	$\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4} \text{ and } \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$	
	and passes through the point (1,1,1). Also find the angle between the given lines.	

P a g e 4 | 6

(Thi	<u>SECTION E</u> s section comprises of with two sub-parts. First two case study questions have three subparts o	of marks
36	1, 1, 2 respectively. The third case study question has two sub parts of 2 marks each.) The Government declare that farmers can get Rs 300 per quintal for their Tomatoes on 1st July and after that, the price will be dropped by Rs 3 per quintal per extra day. Raman's father has 80 quintal of Tomatoes in the field on 1st July and he estimates that crop is increasing at the rate of 1 quintal per day.	
	 Based on the above information, answer the following questions. (i) If x is the number of days after 1st July, then write price and quantity of Tomato in terms of x. (ii) Find the Revenue in terms of x. (iii) Find the number of days after 1st July, when Raman's father attains maximum revenue. 	1 1 2
	OR	
	On which day should Raman's father harvest the tomatoes to maximise his revenue?	
37		
	A doctor is to visit a patient. From the past experience, it is known that the probabilities that she	
	will come by train, bus, scooter or by other means of transport are respectively 3/10, 1/5, 1/10 and	
	2/5. The probabilities that she will be late are $1/4$, $1/3$, and $1/12$, if she comes by train, bus and	
	scooter respectively, but if she comes by other means of transport, then she will not be late.	
	(i) Find the total probability that she arrives late.	2
	(ii) One day, when she arrives, she is late. What is the probability that she comes by train?	2

