केन्द्रीय विद्यालय संगठन,राँची संभाग

KENDRIYA VIDYALAYA SANGATHAN, RANCHI REGION

प्री-बोर्ड परीक्षा / Pre-Board Examination

सत्र / SESSION 2024-25

कक्षा / CLASS X

गणित / MATHEMATICS BASIC (241)

Time Allowed: 3 Hours

Maximum Marks: 80

1. This question paper contains 38 questions. All questions are compulsory.

2. Question paper is divided into FIVE sections-SECTION A, B, C, D and E.

3.In section A, question number 1 to 18 are multiple choice questions(MCQs) and question number 19 and 20 are Assertion -Reason based questions of 1 marks each.

4.In section B, questions number 21 to 25 are very short answer(VSA) type questions of 2 marks each.

5.In section C, questions number 26 to 31 are short answer(SA) type questions carrying 3 marks each.

6.In section D, questions number 32 to 35 are long answer(LA) type questions carrying 5 marks each.

7.In section E, question number 36 to 38 are case based integrated units of assessment questions carrying 4 marks each.Internal choice is provided in 2 marks question in each case study.in case study.

8. There is no overall choice. However, and internal choice has been provided in 2 questions in section B,2 questions in Section C,2 questions in Section D and 3 questions in Section E.

9.Draw neat figures wherever required. Take π =22/7 wherever required in stated.

10.Use of calculators in NOT allowed.

Q.No	SECTION A				
. 1	The HCF of $(2^3 \times 3^2 \times 5)$, $(2^2 \times 3^3 \times 7)$ and $(2 \times 5^2 \times 7^2)$ is:				
	(A) 630 (B)	70 (C) 2	10	(D) 2	
2	A quadratic polynon	nial whose zeros are 3	3 and -2 is:		1
	(A) $x^2 - x - 6$ (B)	$) x^{2} + x - 6$ (C) x^{2}	² - x + 6	(D) $x^2 + x + 6$	
3	The system of equations $3x + 4y = 5$ and $6x + 8y = 10$ represents:				1
	(A) Infinite solutions (B) Unique solution (C) No solution (D) None of these				
4	The L.C.M and H.C.F of two numbers are 180 and 6 respectively. If one of the numbers is 1				
	30, the other number is				
	(A) 60 (B) 36 (C) 3	0	(D) 48	
5	If 5 tan θ = 12, where 0° < θ < 90°, then the value of sec θ is:				
	(A) 13/5 (B) 5/13 (C) 13	3/12	(D) 5/12	
6	For the quadratic equencies must be:	uation $3x^2 - 6x + k = 0$	0 to have real	l and equal roots, the value of k	1
	(A) 3 (E	B) 6 (C) 9		(D) 4	
7	The total surface area of sphere of radius r is				
	(A) πr^2 (H	B) $2\pi r^2$ (C) 3π	πr^2	(D) $4\pi r^2$	1
8	A tangent PQ at a point Q so that OQ	bint P of a circle of ra = 13 cm. Length PQ	dius 5 cm me is :	eets a line through the centre O at	1
	(A) 12 cm (B) 13	cm (C) 8.5 cm	(D) √119) cm.	
9	If the angle between	two radii of a circle i	is 110°, then t	the angle between the tangents at	1

	the ends of the radii i	s:						
	(A) 90° (B) 50° (C) 70° (D) 40°							
10	The distance between the points $(2,3)$ and $(-2,0)$ is							1
	(A) 2 units (B) 3 units (C) 5 units (D) 25 units							
11	Which of the following is not a similarity criterion for two triangles?							1
	(A) AAA (B) SAS	S (C)	SSS ((D) ASA				
	In \triangle ABC, right-angled at B, AB = 24 cm, BC = 7 cm. The value of tan C is:							
12	(A) 12/7 (B) 24/7 (C) 20/7 (D) 7/24						1	
13	13 The value of $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$ is:							1
	(A) 0 (B) 1 (C) 2 (D) 4							
14	In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. The length of the							1
	arc is;							1
	(A) 20cm (B) 21cm	(C) 22cm	(D) 25ci	m				
	If the mean of the fo	llowing die	stribution	is 2.6 then	the value	of x is		1
15	If the mean of the fo	nowing di	stitution	15 2.0, then	the value	01 X 13		1
	Variable(x)	1	2	3	4	5		
	Frequency	4	5	X	1	2	_	
	(A) 3 (B) 8	(C)	13	(D) 24				
	If the points $A(6, 1)$,	B(8, 2), C(9, 4) and I	D(p, 3) are	the vertice	es of a para	llelogram, taken	1
16	in order, then the valu	e of p is	_					1
17	(A) 4 (B) -6	(C)	/	(D) -2	1 6 5 2	1 (77)	1 1 11	
17	A card is selected at i being queen of heart	andom froi	m a well s	huffled dec	ck of 52ca	rds. The pro	obability of its	1
10	(A)3/13 (B) 6/52 (C) 6/13 (D)1/52							
18	For the following distribution:						1	
	Class	0.5	5 10	10.15	15 20	20.25]	
		10	J-10	10-13	20	20-23		
	Frequency	10	15	12	20	9	J	
	the modal class is							
	(A)10-15 (B)15-	·20 (C	$(C)_{20-25}$ (D) ₅₋₁₀					
		× ×	/					
	DIRECTIONS for (0.19-0.20): In the question number 19 and 20, a statement of							
	Assertion (A) is follow	ved by a st	atement of	f Reason (R). Choos	e the corre	ect option	
	 A) Both assertion (A) and reason (R) are true and reason (R) is the correct explana assertion (A) B) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) 							
C) Assertion (A) is true but reason (R) is false.D) Assertion (A) is false but reason (R) is true.								

19	Assertion (A): The sequence 3, 6, 9, 12, is an arithmetic progression.			
	Reason (R): In an AP, the difference between any two consecutive terms is			
	always the same			
20	Assertion(A): $(3+\sqrt{2})\sqrt{2}$ is an irrational number.			
	Reason(R): Product of two irrational numbers is always irrational.			
	SECTION B			
21	If the lines $3x+2ky-2 = 0$ and $2x+5y+1 = 0$ are parallel, then find the value of k	2		
22	If sec $\theta = \frac{5}{4}$, then evaluate $\frac{\tan \theta}{1 + \tan^2 \theta}$.	2		
23	A right angle triangle ABC, right angled at A, circumscribes a circle of radius 'r'. If AB & BC are of lengths 6cm and 10cm respectively, find the value of 'r' C	2		
24	In the given figure DE BC, if BD = 3cm, $AD = 2 \text{ cm}$, $AE = 4$ cm, then find the value of AC	2		
	A E V			
	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. Q			
25.	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR)	2		
25.	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$)	2		
25.	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$). SECTION-C	2		
25. 26.	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. Q P $RThe perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector.(OR)Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use \pi = 3.14).SECTION-CA box contains 90 discs which are numbered from 1 to 90.If one disc is drawn at random from the box,find the probability that it bears(i) a two digit number(ii) a perfect square(iii) a number divisible by 5$	2		
25. 26. 27	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$). SECTION-C A box contains 90 discs which are numbered from 1 to 90.If one disc is drawn at random from the box,find the probability that it bears (i) a two digit number (ii) a perfect square (iii) a number divisible by 5 If α and β are the zeroes of a polynomial $x^2 - 5\sqrt{3x} + 3$,then find the value of $\alpha + \beta = \alpha\beta$	2 3 3		
25. 26. 27 28	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$). SECTION-C A box contains 90 discs which are numbered from 1 to 90.If one disc is drawn at random from the box,find the probability that it bears (i) a two digit number (ii) a perfect square (iii) a number divisible by 5 If α and β are the zeroes of a polynomial $x^2 - 5\sqrt{3x} + 3$,then find the value of $\alpha + \beta - \alpha\beta$ Prove that $2\sqrt{2\sqrt{5}}$ is an irrational number where $\sqrt{5}$ is an irrational number.	2 3 3 3		
25. 26. 27 28 29	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$). SECTION-C A box contains 90 discs which are numbered from 1 to 90.If one disc is drawn at random from the box,find the probability that it bears (i) a two digit number (ii) a perfect square (iii) a number divisible by 5 If α and β are the zeroes of a polynomial $x^2 - 5\sqrt{3}x + 3$,then find the value of $\alpha + \beta - \alpha\beta$ Prove that $3+2\sqrt{5}$ is an irrational number,where $\sqrt{5}$ is an irrational number. Prove that the lengths of tangents from an external point to a circle are equal	2 3 3 3 3		
25. 26. 27 28 29	(OR) In the given figure , DE OQ and DF O R, Show that EF QR. The perimeter of a sector of a circle of radius 5.7 m is 27.2 m. Find the area of the sector. (OR) Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use $\pi = 3.14$). SECTION-C A box contains 90 discs which are numbered from 1 to 90.If one disc is drawn at random from the box, find the probability that it bears (i) a two digit number (ii) a perfect square (iii) a number divisible by 5 If α and β are the zeroes of a polynomial $x^2 - 5\sqrt{3}x + 3$, then find the value of $\alpha + \beta - \alpha\beta$ Prove that $3+2\sqrt{5}$ is an irrational number, where $\sqrt{5}$ is an irrational number. Prove that the lengths of tangents from an external point to a circle are equal. (OR)	2 3 3 3 3		

		-					
30	A fraction becomes $\frac{4}{5}$ if 1 is added to both the numerator and denominator. If 5 is						
	5 subtracted from both the numerator and denominator, the fraction becomes $\frac{1}{2}$. Find the						
	Traction. Prove that	3					
31.	$\frac{\tan\theta + Sec\theta - 1}{\tan\theta - Sec\theta + 1} = \frac{1 + Sin\theta}{\cos\theta}.$						
	(OR) Prove that $\sqrt{\frac{1+sinA}{1-sinA}} = secA + tanA$						
	SECTION D (LONG ANSWER TYPE)						
32	The sum of the areas of two squares is 640 m^2 . If the difference of their perimeters is	5					
	64m, find the sides of the two squares.						
	(OR) 1						
	The difference of two numbers is 5 and the difference of their reciprocal is $\frac{1}{10}$. Find the						
	numbers.						
33	Prove that If a line is drawn parallel to one side of a triangle to intersect other two sides	5					
55	in distinct points, the other two sides are divided in the same ratio.						
34	Find mode and mean of the following distribution:	5					
	Class 0-20 20-40 40-60 60-80 80-100 100-120						
	Frequency 10 35 52 61 38 29						
25	A tent is in the charge of a culinder summer at the accuracy for If the height and discuster	5					
33	A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 meters, find the area of canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of Rs.500 per m^2 . (OR) From a solid cylinder whose height is 8 cm and radius is 6 cm, a conical cavity of height 8						
	cm and the base radius 6 cm is hollowed out. Find the volume of the remaining solid correct to two places of decimal. Also, find the total surface area of the remaining solid. (Take $\pi = 3.14$)						
	SECTION E(CASE BASED QUESTIONS)						
36.	chairs are to be placed in concentric circular arrangement in such a way that each succeeding circular row has 10 seats more than the previous one.						
·		•					

