KENDRIYA VIDYALAYA SANGATHAN, BHOPAL REGION

1st PRE-BOARD EXAMINATION 2025-26

Class: XII (Mathematics) 041 Set-2

MM: 80 Time: 3 Hours

General Instructions: -

(i)	All questions are con	npulsory.				
(ii)	This question paper contains 38 questions divided into 5 sections A, B, C, D and E.					
(iii)	Section A comprises of 20 questions of 1 mark each. Section B comprises of 5questions (SA-					
	I) of 2 marks each. Section C comprises of 6 questions (SA-II) of 3marks each. Section D					
	comprises of 4long answer type questions (LA) of 5 marks each. Section E comprise of 3					
	-	uestions of 4 marks ea				
(iv)	There is no overall choice. However, an internal choice has been provided in 2questions of 2					
	marks each, 3 questions of 3 marks each and 2 questions of 5 marks each. You have to attempt					
	only one of the alternatives in all such questions.					
(v)	Use of calculators is not permitted.					
	SECTION A (Multiple Choice Questions of 1Mark each)					
Q.1	The principal value of	$[\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})]$ is	3			
	(a) π	(b) $-\pi/2$	(c) 0	(d) $2\sqrt{3}$		
Q.2	If A and B are two ske	$\frac{\text{(b)} - \pi/2}{\text{w symmetric matrices,}}$	then (AB + BA) is:			
	(a) a alzaw	(h) a ayımmatria		(d) an identity		
	symmetric matrix	matrix	(c) a null matrix	matrix		
Q.3	$\int_{1}^{\infty} \left[2x - 1 3x \right] =$	(b) a symmetric matrix $= \begin{bmatrix} x+3 & 12 \\ 0 & 35 \end{bmatrix}, \text{ then va}$	lue of $(x - y)$ is:			
	$\begin{bmatrix} 0 & y^2 - 1 \end{bmatrix}$	I 0 351	(),			
	(a) 2 or 10 If $y = log (sin e^x)$, the	(b) -2 or 10	(c) 2 or -10	(d) -2 or -10		
Q.4	If $y = \log(\sin e^x)$, the	n dy/dx is:				
	() v	(1) Y	() Y , Y	(1) v v		
0.5	(a) cot e ^x	(b) cosec e ^x -x is decreasing in the in	(c) e ^x cot e ^x	(d) e ^x cosec e ^x		
Q.5	The function $y - x^-e$	is decreasing in the in	tervai			
	(a) (0, 2)	(b) $(2, \infty)$	(c) $(-\infty, 0)$	(d) $(-\infty, 0) \cup (2, \infty)$		
Q.6	The rate of change of sur	rface area of a sphere with	respect its surface rac	lius 'r', when $r = 4$ cm, is:		
	() ()	(1) 10 2/	() 22 2/	(1) 16 2/		
	(a) $64\pi \text{ cm}^2/\text{cm}$	(b) $48\pi \text{ cm}^2/\text{cm}$	(c) 32π cm ² /cm	(d) 16π cm ² /cm		
Q.7	$\int e^{5logx} dx$ is equal to	D:				
	(a) $x^5/5 + C$	(b) $x^6/6 + C$	(c) $5 x^4 + C$	(d) $6 x^5 + C$		
Q.8	If $\int_0^a 3x^2 dx = 8$, the	en the value of 'a' is:				

	(a) 2	(b) 4	(c) 8	(d) 10
Q.9	The integrating factor:	for solving the different	ial equation, $x \frac{dy}{dx} - y$	$=2x^2$ is
			ax	
	(a) e ^{-y}	(b) e ^{-x}	(c) x	(d) 1/x
Q.10	The order and degree ((b) e ^{-x} (if defined) of the different	ential equation, $\left(\frac{d^2y}{dx^2}\right)^2$	$+\left(\frac{dy}{dx}\right)^3 = x\sin\left(\frac{dy}{dx}\right)$
	respectively are:			
	(a) 2 ,2	(b) 1,3	(c) 2, 3	(d) 2, degree not defined
Q.11	Let $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$.	If \vec{b} is a vector such that	at $\vec{a} \cdot \vec{b} = \left \vec{b} \right ^2$ and $\left \vec{a} \right $	(d) 2, degree not defined $\vec{b} = \sqrt{7}$, then $ \vec{b} $ equals
	(a) 7	(b) 14	(c) √7	(d) 21
Q.12	A unit vector along the	(b) 14 e vector $4\hat{i} - 3\hat{k}$ is:		
	$(a)\frac{1}{7}(4\hat{\imath}-3\hat{k})$	$(b)\frac{1}{5}(4\hat{\imath}-3\hat{k})$	$(c)\frac{1}{\sqrt{7}}(4\hat{\imath}-3\hat{k})$	$(\mathrm{d})\frac{1}{\sqrt{5}}(4\hat{\imath}-3\hat{k})$
Q.13	The two lines $x = ay$	+b, $z = cy + d$; and $x = cy + d$	= a'y + b', $z = c'y$	+ d' are perpendicular to each
	other, if			
	(a) $\frac{a}{a'} + \frac{c}{c'} = 1$	(b) $\frac{a}{a'} + \frac{c}{c'} = -1$	(c) aa' + cc' = 1	(d) aa' + cc' = -1
Q.14	If a line makes an angl	e of $\pi/4$ with the positive	ve directions of both x-a	(d) $aa' + cc' = -1$ axis and z-axis, then the angle
		e positive direction of y		
	(a) 0	(b) π/4	(c) π/2	(d) π
Q.15	l .	tive function $Z = ax +$	by has the same maxir	(d) π num value on two corner
Q.15	l .	(b) $\pi/4$ tive function $Z = ax + egion$, then the number of	by has the same maxir	
Q.15	points on the feasible re	tive function $Z = ax + egion$, then the number of	by has the same maximal points at which Z_{max}	occurs is:
	points on the feasible read (a) 0	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite	occurs is: (d) infinite
Q.15	points on the feasible read (a) 0	tive function $Z = ax + egion$, then the number of	by has the same maxing of points at which Z_{max} (c) finite	occurs is: (d) infinite
	points on the feasible read (a) 0 The restrictions imposed	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite olved in an objective fundamental Z_{max}	occurs is: (d) infinite
	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite colved in an objective function (c) optimal solutions	(d) infinite etion of a LPP are called (d) infeasible solutions
Q.16	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite colved in an objective function (c) optimal solutions (c) , $P(F) = 0.3$, $P(E \cup F) = 0.3$	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is:
Q.16 Q.17	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite colved in an objective function (c) optimal solutions (c) , $P(F) = 0.3$, $P(E \cup F) = 0.3$	(d) infinite etion of a LPP are called (d) infeasible solutions
Q.16	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite colved in an objective function (c) optimal solutions (c) , $P(F) = 0.3$, $P(E \cup F) = 0.3$	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is:
Q.16 Q.17	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two even (a) 0.6 If P(A) = 1/7, P(B) = 5	tive function $Z = ax + ax$	by has the same maxing of points at which Z_{max} (c) finite colved in an objective function $P(F) = 0.3$, $P(E \cup F) = 0.5$ then $P(\overline{A}/B)$ is:	(d) infinite tion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0
Q.16 Q.17	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Bas	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion $Z = ax + b$	by has the same maximal by has the same maximal by has the same maximal by has a which Z_{max} . (c) finite colved in an objective function Z_{max} . (c) optimal solutions Z_{max} ,	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the
Q.16 Q.17	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two even (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Base other labeled Reason (a)	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion $Z = ax + b$	by has the same maximal by has the same maximal by has the same maximal by has a which Z_{max} . (c) finite colved in an objective function Z_{max} . (c) optimal solutions Z_{max} ,	(d) infinite tion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0
Q.16 Q.17	points on the feasible read (a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Base other labeled Reason (a) below	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion $Z = ax + b$	by has the same maximal by has the same maximal of points at which Z_{max} . (c) finite colved in an objective function Z_{max} , Z_{max}	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the (b), (b), (c) and (d) as given
Q.16 Q.17	(a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Bass other labeled Reason (a) below (a) Both Assertion (A)	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion $Z = ax + b$	by has the same maximal by has the same maximal of points at which Z_{max} . (c) finite colved in an objective function Z_{max} , Z_{max}	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the
Q.16 Q.17	(a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Bas other labeled Reason (below (a) Both Assertion (A).	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ on decision variables inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents inverse ents $Z = ax + b$ ents	by has the same maximal by has the same maximal of points at which Z_{max} (c) finite all olved in an objective function (c) optimal solutions (c) optimal solutions (c) optimal solutions (c) $($	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the (b), (b), (c) and (d) as given etion correct explanation of the
Q.16 Q.17	(a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Base other labeled Reason (below) (a) Both Assertion (A) Assertion (A). (b) Both Assertion (A)	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ on decision variables inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents inverse ents $Z = ax + b$ ents	by has the same maximal by has the same maximal of points at which Z_{max} (c) finite all olved in an objective function (c) optimal solutions (c) optimal solutions (c) optimal solutions (c) $($	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the (b), (b), (c) and (d) as given
Q.16 Q.17	(a) 0 The restrictions imposed (a) feasible solutions Let E and F be two ever (a) 0.6 If P(A) = 1/7, P(B) = 5 (a) 6/7 Assertion Reason Bass other labeled Reason (below (a) Both Assertion (A) Assertion (A). (b) Both Assertion (A).	tive function $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ egion, then the number of $Z = ax + b$ on decision variables inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents such that $Z = ax + b$ ents inverse ents inverse ents $Z = ax + b$ ents	by has the same maximal by has the same maximal of points at which Z_{max} (c) finite an objective function (c) optimal solutions $\overline{P(F)} = 0.3$, $\overline{P(E \cup F)} = 0.5$ $\overline{P(F)} = 0.5$ P	(d) infinite etion of a LPP are called (d) infeasible solutions 0.4, then P(E/F) is: (d) 0 (d) 1/5 beled assertion (A) and the (b), (b), (c) and (d) as given etion correct explanation of the

Q.19	<u>Assertion (A): All</u> trigonometric functions have their inverse over their respective domains.				
	Reason (R): The inverse of $\tan^{-1}x$ exists for some $x \in \mathbb{R}$.				
Q.20	<u>Assertion (A): The</u> order of the differential equation: $\left(\frac{d^4y}{dx^4}\right)^2 = \left[x + \left(\frac{dy}{dx}\right)^2\right]^3$ is 4.				
	Reason (R): The order of the differential equation is order of highest order derivative involved in the differential equation.				
	SECTION-B (SA-I of 2 Marks each)				
Q.21	Let f: A \rightarrow B be defined by $f(x) = \frac{x-2}{x-3}$, where A = R - {3} and B = R - {1}. Discuss the bijectivity of the function.				
Q.22	Find the interval in which the function $f(x) = 2 x^3 - 3 x$ is strictly increasing.				
Q.23	Evaluate: $\int_0^{\pi/2} \sin 2x \cos 3x dx$				
	OR				
	Given $\frac{d}{dx}F(x) = \frac{1}{\sqrt{2x-x^2}}$ and $F(1) = 0$, find $F(x)$.				
Q.24	If $\vec{a} = 4\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{b} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$, then find a unit vector along the vector $\vec{a} \times \vec{b}$.				
Q.25	A pair of dice is thrown and the sum of the numbers appearing on the dice is observed to be 7. Find the probability that the number 5 has appeared on at least one die.				
	OR The probability that A hits the target is 1/3 and the probability that B hits it, is 2/5. If both try to hit the target independently, find the probability that the target is hit.				
	SECTION-C (SA-II of 3 Marks each)				
Q.26	If $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and I is the identity matrix of order 2 then show that $A^2 = 4A - 3I$. Hence find A^{-1} .				
Q.27	If y = x sin (a + y), prove that: $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$.				
	ax sina OR				
	If $(sinx)^y = x + y$, $find \frac{dy}{dx}$.				
Q.28	Find: $\int \frac{2+\sin 2x}{1+\cos 2x} e^x dx$.				
	OR				
	Evaluate: $\int_0^{\pi/4} \frac{1}{\sin x + \cos x} dx$.				
Q.29	Find the particular solution of the differential equation $x \frac{dy}{dx} - y = x^2 e^x$, given y (1) = 0.				
	Find the general solution of the differential equation $x \frac{dy}{dx} = y(\log y - \log x + 1)$.				

Q.30	Find shortest distance between the following lines: $\vec{r} = 3\hat{\imath} + 5\hat{\jmath} + 7\hat{k} + \lambda(\hat{\imath} - 2\hat{\jmath} + \hat{k})$ and $\vec{r} = -\hat{\imath} - \hat{\jmath} - \hat{k} + \mu(7\hat{\imath} - 6\hat{\jmath} + \hat{k})$.					
Q.31	Solve the following LPP graphically: Maximize $z = x + y$					
	Subject to constraints $2x + 5y \le 100$, $8x + 5y \le 200$, $x, y \ge 0$.					
	SECTION-D (LA of 5 Marks each)					
Q.32	Find the inverse of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$. Using A ⁻¹ , solve the system of linear equations:					
Q.33	x-y+2z=1; $2y-3z=1$; $3x-2y+4z=3$. Find the intervals on which the function $f(x) = (x-1)^3 (x-2)^2$ is					
	(a) strictly increasing (b) strictly decreasing. OR					
	Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its side. Also find the maximum volume.					
Q.34	Using integration, find the area of the region bounded by the circle $x^2 + y^2 = 16$, line $y = x$ and y-axis, but lying in the 1 st quadrant.					
Q.35	Find the image of the point (2, -1, 5) in the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$.					
	Vertices B and C of \triangle ABC lie on line $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{4}$. Find the area of \triangle ABC given that point A has coordinates (1, -1, 2) and the line segment BC has length of 5 units.					
	SECTION-E (Case Study Based Questions of 4 Marks each)					
Q.36	Raise your Voice of Cast your Voice of Let's celebrate the Festival of Democracy					
	Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows: $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election} - 2019\}$					

(i) Two neighbors X and $Y \in I$. X exercised his voting right while Y did not cast her vote in general election-2019. Check whether X is related to Y or not.

(ii) Mr. 'X' and his wife 'W' both exercised their voting right in general election-2019. Show that (X, W) ϵ R and (W, X) ϵ R.

(iii) Three friends F_1 , F_2 and F_3 exercised their voting right in general election-2019. Show that $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$.

OR

Show that the relation R defined on set I is an equivalence relation.

Q.37 Let f(x) be a real valued function. Then its

Left Hand Derivative (L.H.D.): $Lf'(a) = \lim_{h \to 0} \frac{f(a-h)-f(a)}{-h}$

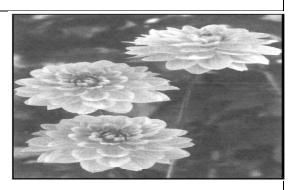
Right Hand Derivative (R.H.D.): $Rf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

Also, a function f(x) is said to be differentiable at x = a if its L.H.D. and R.H.D. at x = a exist and both are equal.

For the function $f(x) = \begin{cases} |x-3| & ; x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} & ; x < 1 \end{cases}$ answer the following questions:

(i). What is R.H.D. of f(x) at x = 1?

(ii). What is L.H.D. of f(x) at x = 1?


(iii). (a) Check if the function f(x) is differentiable at x = 1.

OR

(iii). (b) Find f'(2) and f'(-1).

Q.38

A shopkeeper sells three types of flower seeds A1 , A2,A3. They are sold in the form of a mixture , where the proportions of these seeds are 4:4:2, respectively. The germination rates of the three types of seeds are 45%, 60% and 35% respectively

Based on the above information:

- (a) Calculate the probability that a randomly chosen seed will germinate.
- (b) Calculate the probability that the seed is of the type A2, given that a randomly chosen seed germinates.
