KENDRIYA VIDYALAYA SANGATHAN BHOPAL REGION

PREBOARD EXAMINATION, 2025-26 Class-XII SUBJECT-PHYSICS (042) SET- 2

Time 3 Hrs. M.M. 70

ROLL NO.						
----------	--	--	--	--	--	--

General Instructions:

- (1) There are 33 questions in all. All questions are compulsory.
- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
- (3) All the sections are compulsory.
- (4) Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study-based questions of four marks each and Section E contains three long answer questions of five marks each.
- (5) There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.
- (6) Use of calculators is not allowed.
- (7) You may use the following values of physical constants where ever necessary

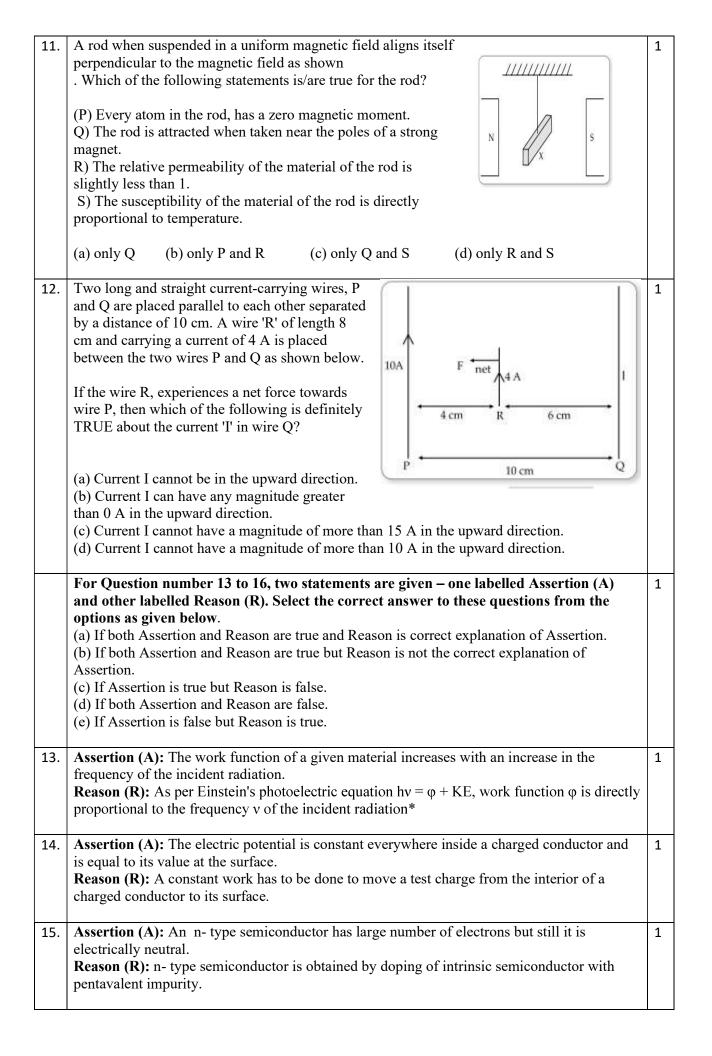
i.
$$c = 3 \times 10^8 \text{ m/s}$$

ii.
$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

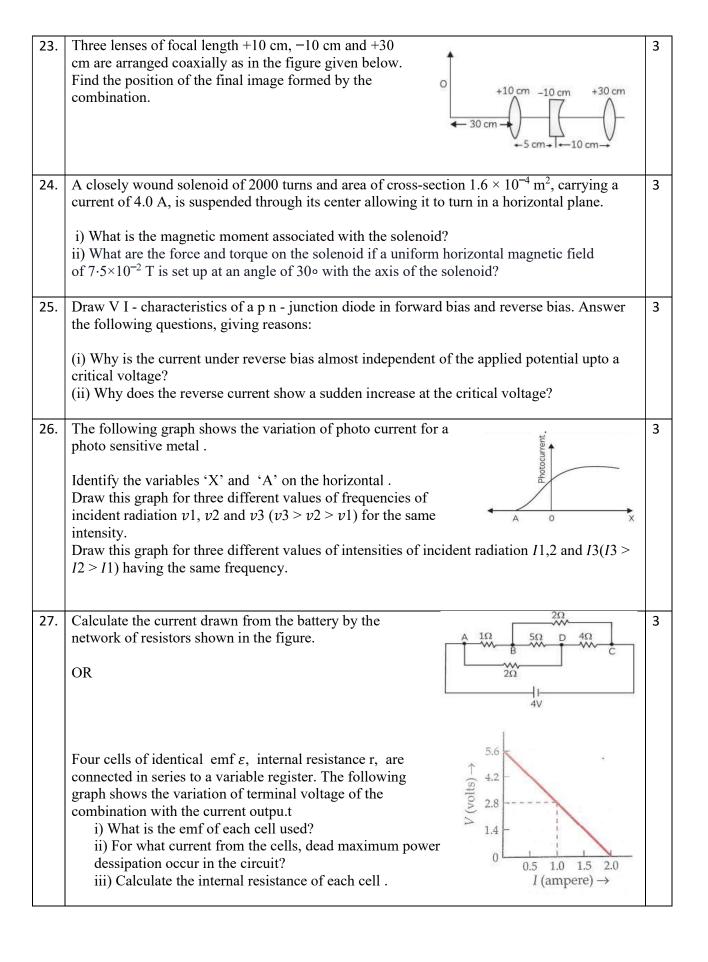
iii.
$$m_p = 1.7 \times 10^{-27} \text{ kg}$$

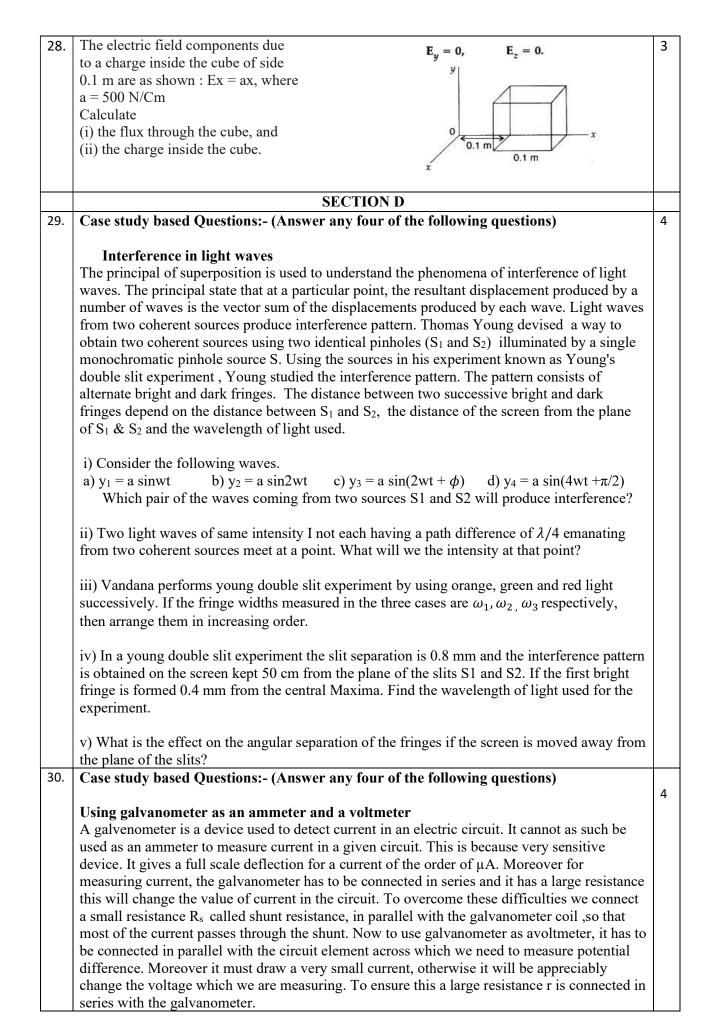
iv.
$$e = 1.6 \times 10^{-19} C$$

v.
$$\mu 0 = 4\pi \times 10^{-7} \text{ T m } A^{-1}$$


vi.
$$h = 6.63 \times 10^{-34} \text{ J s}$$

vii.
$$\varepsilon_0 = 8.854 \text{ x} 10^{-12} C^2 N^{-1} m^{-2}$$


viii. Avogadro's number = 6.023×10^{23} per gram mole


SECTION A						
When two point charges are placed at a certain distance r in air, they exerts a force F on each other. Find the distance at which these charges will experience the same force when kept in a medium of dielectric constant K.						
$\begin{pmatrix} (a) \\ K \end{pmatrix}$ $\begin{pmatrix} (b) \\ 1 \end{pmatrix}$ $\begin{pmatrix} (c) \\ 1 \end{pmatrix}$						
Which diagram below best illustrates a reverse biased diode?	1					
(a) _{5v}						
15V 10V -5V 0						
(c) (d)						
The graph below shows the variation of the maximum kinetic energy of the emitted photoelectron with the frequency of the incident radiation for a given metal. Which of the following gives the work function of the metal? (a) x-intercept (b) y-intercept (c) the slope of the graph (d) the area under the graph	1					
	When two point charges are placed at a certain distance r in air, they exerts a force F on each other. Find the distance at which these charges will experience the same force when kept in a medium of dielectric constant K. (a) $\frac{r}{K}$ (b) r (c) r x \sqrt{K} (d) $\frac{r}{\sqrt{K}}$ Which diagram below best illustrates a reverse biased diode? (b) $\frac{r}{K}$ (c) $\frac{r}{K}$ (d) $\frac{r}{K}$ (d) $\frac{r}{K}$					

Ontion	Vinatia ananay	Detential enemary	
Option a)	Kinetic energy Increases	Potential energy Increases	
b)	Increases	Decreases	
(c)	Decreases	Increases	
(d)	Decreases	Decreases	
different and $T2$ at (a) $T1 > T$ (b) $T1 < T$ (c) $T1 =$ (d) $T1$ is	temperatures <i>T</i> 1 re shown in figure. 2 2 <i>T</i> 2 greater or less than	aph for a given metallic wire It follows from the graph that T2 depending on whether the reateror less than the ratio V/A	at: $ \uparrow I $ $ V \longrightarrow $
The prop	erty which is not of	f an electromagnetic wave tra	avelling in free space –
(a) T	hey are transverse	in nature	
(b) T	hey originated fron	n charge moving with uniform	m speed.
(c) T	hev travel with a sr	peed equal to $\sqrt{\frac{1}{\mu_0 \epsilon_0}}$	
		▼	1
(d) T	he energy density i	n electric field is equal to end	ergy density in magnetic field.
The impa	ect parameter for ar	alpha particle approaching t	target nucleus is maximum when
_	g angle(θ) is	and an description of the second of	
	- · · ·		
(a) 0°	(b) 90°	(c) 45°	(d) 180°
Trees	Lai 1. avviu a	in the notice of 1.125 find the	a mantia afthain maalaan danaita ia
	hat $R_0 = 1.2 \times 10^{-15}$ m		e rartio of their nuclear density is
(a) 1:1	(b) 5:1	(c) 1:5 (d) 1: 1	125
(4) 111	(0) 5.1	(u) 1.2	. 20
	X (having 7 = 17 ar	nd equal number of protonance	d neutrons) has 1.2 Mev binding
Nucleus	A (maving 2 17 an	1	-
energy p	er nucleon.		
energy p	er nucleon. nucleus Y of Z= 12	2 has total 26 nucleons and 1	.8 Mev binding energy per nucleon.
energy pontage Another The diff	er nucleon. nucleus Y of Z= 12 erence of binding e	2 has total 26 nucleons and 1 nergy between these two	
energy p Another The diff	er nucleon. nucleus Y of Z= 12 erence of binding e	2 has total 26 nucleons and 1	.8 Mev binding energy per nucleon. (d) none
energy p Another The diff (a) 0	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b)	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev	(d) none
energy p Another The diff (a) 0	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The	(d) none ey are each given insulated copper
energy p Another The diff (a) 0	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The	(d) none
energy p Another The diff (a) 0	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s ne same length. The	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The table below lists some detail	(d) none ey are each given insulated copper ils about the solenoids made by them
energy p Another The diff (a) 0	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s ne same length. The Magnetic fie produced	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The e table below lists some detail	(d) none ey are each given insulated copper els about the solenoids made by them to a copy of the cop
energy p Another The diff (a) 0 Three stu wire of the	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s ne same length. The Magnetic fie produced - 1 B ₁	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The e table below lists some detail Radius of soler 3 cm	(d) none ey are each given insulated copper ells about the solenoids made by them noid Core of solenoid air
energy p Another The diff (a) 0 Three stu wire of the student Student	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s ne same length. The Magnetic fie produced 1 B ₁ 2 B ₂	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The e table below lists some detailed Radius of soler 3 cm 3 cm	(d) none Ey are each given insulated copper ils about the solenoids made by them noid Core of solenoid air iron
energy p Another The diff (a) 0 Three stu wire of the	er nucleon. nucleus Y of Z= 12 erence of binding e 6 Mev (b) dents construct a s ne same length. The Magnetic fie produced 1 B ₁ 2 B ₂	2 has total 26 nucleons and 1 nergy between these two 1.6 Mev (c) 6 Mev olenoid of length 35 cm. The e table below lists some detail Radius of soler 3 cm	(d) none ey are each given insulated copper ells about the solenoids made by them noid Core of solenoid air

16.	Assertion (A): It is not possible to have interference between the waves produced by two violins.				
	Reason (R): For interference of two waves the phase difference between the waves must remain constant.				
	SECTION B				
17.	Two identical circular loops P and Q each of radius r and carrying equal currents are kept in the parallel planes having a common axis passing through O. The direction of current in P is clockwise and in Q is anti clockwise as seen from O, which is equidistant from the loops P and Q. Find the magnitude of net magnetic field at O.	2			
18.	In an electromagnetic wave propagating along x-axis the magnetic field oscillates at a frequency of $3x10^{10}$ Hz and has an amplitude of 10^{-7} Tesla acting along the y direction. i) What is the wavelength of the wave? ii) write the expression representing the corresponding oscillating electric field.				
19.	The resistance of PN junction is low when forward wise and is high when reverse biased Explain. OR Wiith the help of a suitable diagrams explain the working of half wave rectifier.	2			
20.	Depict the shape of a wavefront in each of the following cases: (I) Light diverging from point source. (II) Light emerging out of a convex lense when a point source is placed at its focus.				
21.	A conductor of length' l' is connected to a d.c. sourceof potential 'V'. If the length of conductor tripled, by stretching it, keeping V coanstant, explain how do the following factors varyin the conductor. (a) Drift speed of the electron (b) Resistivity				
	SECTION C				
22.	The energy level diagram of an element is given below. Which of them will result in the transition of a photon of wavelength 275 nm? Which transition corresponds to emission of radiation of i) maximum wavelength and iii) minimum wavelength? (give reason also)	3			

i) A sensitive galvenometer like a moving coil gallometer can be converted into an ammeter or a voltmeter by connecting a proper resistance to it. Which of the following statement is true. (a) A voltmeter is connected in parallel and current through it is negligible. (b) An ammeter connected in parallel and potential difference across it is small. (c) A voltmeter is connected in series and potential difference across it is small. (d) An ammeter is connected in series in a circuit and the current through it is negligible ii) By mistake a voltmeter is connected in series and and ammeter is connected in parallel with the resistance in an electric circuit what will happen to the instrument. (a) Voltmeter is damaged. **(b)** Ammeter is damaged. (c) Bboth are damaged. (d) Nnone is damaged. iii) A galvanometer coil has a resistance of 15Ω and gives full scale deflection for a current of 4mA. To convert it to anammeter of range 0 to 6 A: (a) 10 m Ω resistance is to be connected in parallel to the galvanometer. (b) $10 \text{ m}\Omega$ resistance is to be connected in series with the galvanometer . (c) $0.1 \text{ m}\Omega$ resistance is to be connected in parallel to the galvanometer. (d) $0.1 \text{ m}\Omega$ resistance is to be connected in series with the galvanometer. iv) A galvanometer has a resistance of 'G' Ω and range of 'V' volt. The value of resistance used in series to converted into a voltmeter of range 5V is (a) 5G b) 4G d) G/4 c) G/5 v) Two identical galvanometers are converted into an ammeter and a millimetre. Resistance of the shunt of milli-ammeter through which the current passes through will be a) more b) equal c) less d) zero **SECTION E** a) Find the potential energy of an electric dipole placed in a uniform electric field. 5 b) In which orientation a dipole placed in a uniform electric field is in i) stable ii) unstable equilibrium c) An electric dipole with dipole moment 4 x 10⁻⁹ Cm is aligned at 30° with direction of a uniform electric field of magnitude 5×10^4 N/C. Calculate the magnitude of torque acting on the dipole. OR a) A parallel plate capacitor of capacitors 'C' is charged to a potential 'V' by a battery. Without disconnecting the battery, the distance between the plates is tripled and a dielectric medium of 'K' is introduced between the plates of capacitor. Explain giving reason, how will the following be affected i) capacitance of capacitor ii) Charge of capacitor iii) Energy of capacitor b) Network of 4 capacitors each of 12 μF capacitance C_1 is connected to 500V supply as shown in the figure determine i) equivalent capacitance of the network

500 V

31.

ii) charge on each capacitor

(a) You are given two convex lenses of short aparature having focal length 4 cm and 10 cm respectively. Which one of these will you use as an objective and which one as an eyepiece for constructing a compound microscope. (b)Draw a ray diagram to show the formation of the image of a small object due to a compound microscope for maximum magnification. (c) If an object is placed at 6 cm from the objective lens. Calculate magnifying power of the it if final image is formed at the least distance of distinct vision. OR (a) A point object is placed on the principle axis of a convex spherical surface of radius of curvature R which separate the two media of refractive indices n_1 and n_2 ($n_2 > n_1$). Draw the ray diagram and deduce the relation between the object distance 'u', image distance 'v' and the radius of curvature 'R' for refraction to take place at convex spherical surface light going from rarer to denser medium. (b) A converging lens has a focal length of 20 cm in air. It is made of a material of refractive index 1.6, it is immersed in a liquid of refractive index 1.3. Find its new focal length. 5 33. A) When a circuit element X is connected across an a.c. source, a current of $\sqrt{2}$ A flows through it and this current is in phase with the applied voltage. When another element Y is connected across the same a.c. source, the same current flows in the circuit but it leads the voltage by $\frac{\pi}{2}$ radians. i) Name the circuit element X and Y. ii) Find the current that flows in the circuit when series combination of X and Y is connected across the same ac voltage. B) Using Phasor Diagram find expression for impedance of LCR series circuit. OR I. State the principle of working of a transformer. Can a transformer be used to step up our step down a DC voltage (give reason) 2. Specify the two characteristic properties of material suitable for making core of a

4. The power transmission lines need input power at 2300 volt to step down transformer with its primary winding having 4000 turns what should be the number of turns in the secondary

3. Mention the two reasons for energy losses in an actual transformer

bindings in order to get output power at 230 volt.