PUMDET-2018

Subject: Physics (Booklet Number)

82250001

Duration: 90 minutes Full Marks: 100

Instructions

- 1. All questions are of objective type having four answer options for each. Only one option is correct. Correct answer will carry full marks 2. In case of incorrect answer or any combination of more than one answer, ½ marks will be deducted.
- 2. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- 3. Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- 4. Do not make any stray mark on the OMR.
- 5. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 6. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 7. The OMRs will be processed by electronic means. Hence it is liable to become invalid if there is any mistake in the question booklet number or roll number entered or if there is any mistake in filling corresponding bubbles. Also it may become invalid if there is any discrepancy in the name of the candidate, name of the examination centre or signature of the candidate vis-a-vis what is given in the candidate's admit card. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 8. Candidates are not allowed to carry any written or printed material, calculator, pen, docupen, log table, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
- 9. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 10. Hand over the OMR to the invigilator before leaving the Examination Hall.

ROUGH WORK ONLY

QP-PUMDET-2018-Physics FINAL.docx

1.	The equation, $2x^2+3xy+y^2+3x+2y+1=0$, represents				
	(A) An ellipse	(B) A hyperbola			
	(C) A parabola	(D) A pair of straigh	nt lines		
2.	The independent solutions of the equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ are				
	(A) x^2 and x (B) e^{-x^2}	e^{-x} and e^{-x} (C) e^{-x}	e^{2x} and e^{x} ((D) $sin2x$ and $cosx$	
3.	as p goes to ∞ , the integral $\int_0^\infty \frac{dx}{(1+x^p)}$ goes to				
	(A) 0	(B) 1	(C) 2	(D) ∞	
4.	If \vec{r} is the position vector of any point on the surface of a cube, each side of which has length L , then the surface integral $\oiint \vec{r} \cdot \vec{dS}$ has the value				
	(A) 0	(B) $3L^2$	(C) L^3	(D) $3L^3$	
5.	Which one of the following	matrices is hermitian	?		
	$(A)\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$	$(B)\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	(C) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$	$(D)\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	
6.	The value of the integral $I =$	$=\oint \frac{dz}{(z-2)}$, where the co	ontour is the circle	given by $ z = 4$, is	
	(A)2π <i>i</i>	(B) 0 (C) 1	$/2\pi i$ ((D) 1	
7.	A non-trivial (i.e. $x \neq 0$) sol	ution of the equation	$tanh(x) = kx ext{ is p}$	ossible for	
	$(\mathbf{A})k=0$	(B) $0 < k < 1$	(C) $k > 1$	(D) $k < 0$	
8.	Let $f(t) = 0$ for $t < 0$ and $f(t)$ by $F(\omega)$. Then $ F(\omega) ^2$		≥ 0 . Denote the	Fourier transform of	
	(A) $\exp\left(-\frac{(\omega-\omega_0)^2}{2\tau^2}\right)$	(B) $\exp(-\frac{\alpha}{2})$	$\left(\frac{\omega-\omega_0)^2\tau^2}{2}\right)$		
	$(C)\frac{1}{(\omega-\omega_0)^2+\frac{1}{\tau^2}}$	$(D)\frac{1}{(\omega-\omega_0)^2}$	$\frac{1}{4\tau^2}$		
9.	A uniform thin rod of length impulse <i>I</i> is suddenly applied travel during the time it take	d perpendicularly to the	ne rod at one end.		
	$(A)\frac{md^2}{I}$	(B) 2πd/3	$(C)\pi d/3$	(D)I/d	

10.	What is the number of quantities that remain invariant when a particle moves around a centre under an attractive inverse-square (i. e. $F \propto 1/r^2$) type central force?				
	(A) 1 (B) 2	(C) 4	(D) 7		
11.	A moving proton collides with another proton which is initially at rest. If M_p be the mass of a proton, what is the minimum kinetic energy that the moving proton must have in order to make possible the reaction $p + p \rightarrow p + p + p + \bar{p}$?				
	$(A)2M_pc^2$	(B) $4M_pc^2$	(C) $6M_pc^2$	(D) None of these	
12.	According to the Newtonian is given by $\phi = -\frac{GM_{sun}}{r}$, so relativistic corrections, the arguments K must be proposed	ymbols having their unexpression for ϕ become	sual significance. On in	troducing general	
	(A) $\frac{GM_{\text{sun}}^2}{c^2}$ $(c = \text{Velocity})$	(B) $\frac{G^2 M_{sun}^2}{c^2}$ Y of light)	(C) $GM_{sun}c^2$	(D) $\frac{\left(M_{sun}c^2\right)^2}{G^2}$	
13.	The Hamiltonian for a particle is given by $H = \frac{1}{2m}p_x^2 + kx^4$, symbols having their usual				
	meanings. What is the formula for \ddot{x} ?				
	$(A)-kx^3$	(B) $-4kx$	(C) $-\frac{4kx}{m}$	(D) $-\frac{4kx^3}{m}$	
14.	A particle moves in a media velocity of the particle. Dur force is acting on the particle (A) $\frac{(v_1+v_2)t}{2}$	ing a time <i>t</i> the velocitle, the distance travers	ty diminishes from v_1 to	o v_2 . If no other	
	$(A) \frac{2}{2}$	$(\mathrm{B})\frac{2v_1v_2t}{v_1+v_2}$	(C) $\frac{(v_1+v_2)^2}{(v_1+v_2)^2}$	(D) $\frac{(v_1+v_2)}{(v_1+v_2)}$	
15.	The point of suspension of a moving lift which falls with have?	• •	_		
	(A) 1 (B) 2	(C) 0	(D) 3		
16.	Two equal inductors (each of and a resistor (resistance <i>R</i>) frequency can be varied. The	are connected in serie	es and placed across an		
	$(A)\frac{1}{2\pi\sqrt{LC}}$	(B) $\frac{1}{4\pi\sqrt{LC}}$	$(C) \frac{1}{\pi \sqrt{LC}}$	$(D) \frac{1}{2\pi\sqrt{LC - \frac{L^2}{2R^2}}}$	

- 17. Consider a cylinder of radius a and length L filled uniformly with a completely ionized gas of charge density ρ moving parallel to the axis of the cylinder with velocity v. What is the magnetic field at a distance r (< a) from the axis? (Neglect end effects). (B) $B = \frac{\mu_0 \rho v a}{2}$ (C) $B = \frac{\mu_0 \rho v a^2}{2r}$ (D) $B = \frac{\mu_0 \rho v r}{2}$ (A) B = 0The two rails of a railway line are insulated from each other and from ground and are 18. connected by a microvoltmeter. What is its reading when a train travels with a velocity of 90 km/hr along the line, assuming that the vertical component of the geomagnetic field is 0.1 gauss and that the rails are separated by 1 metre? (A) 1V (B) $250 \ mV$ (C) $250 \ \mu V$ (D) $100 \mu V$ An infinite long, thin wire carrying a current I ampere is placed at a distance d metres from a 19. semi-infinite slab of soft iron. The wire is parallel to the surface of the iron slab. If we assume that iron has infinite permeability $(\mu = \infty)$ what is the force per unit length of the wire? (A) $F = \frac{l^2}{d} \times 10^{-7}$ Newtons/metre (B) $F = \frac{I^2}{2d} \times 10^{-7}$ Newtons/metre (D) $F = \frac{I^2}{2d} \times 10^{-7}$ dynes/cm (C) 0An isolated metallic object is charged in vacuum to a potential V_0 , its electrostatic energy 20. becoming E_0 . It is then disconnected from the source of the potential, its charge (O) being left unchanged. It is then placed inside a large volume of a dielectric with dielectric constant
- K. What is its new electrostatic energy?

(A)
$$KE_0$$
 (B) $\frac{\mathrm{QV_0}}{\mathrm{K}}$ (C) $\frac{\mathrm{E_0}}{\mathrm{K}}$ (D) KQV_0

What is the lowest-frequency of normal-mode electromagnetic oscillation in a rectangular 21. cavity resonator of sides a, b, d along X, Y and Z direction with a < b < d? Assume that the cavity has perfectly conducting walls. (c = Velocity of light).

(A)
$$v = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{d^2}} \cdot \frac{c}{2}$$
 (B) $v = \frac{c}{2\pi a}$

(C)
$$v = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{d^2}} \cdot \pi c$$
 (D) $v = \frac{c}{2d}$

For all metals, the relation between thermal conductivity (K), electrical conductivity (σ) and 22. temperature (T) is

(A)
$$\frac{K}{\sigma}$$
 = Constant (B) $\frac{K}{\sigma T}$ = Constant (C) $\frac{K}{\sigma T^2}$ = Constant (D) $\sigma \propto KT$

The ruby laser produces a radiation with wavelength 6943Å and line-width 5×10^{-4} Å. 23. What is the coherence length for this system?

- 24. Suppose two events occur at x_1 and x_2 at the same time t according to a frame of reference S. According to the frame of reference S' which is moving with a velocity v along the common X-axis of the two frames these events occur at x'_1 and x'_2 at times t'_1 and t'_2 . The origins of the frames S and S' coincided at t = t' = 0. Then
 - (A) $t_2' = t_1'$

- (C) $t_2' t_1' = \frac{(x_1 x_2) \cdot \frac{v}{c^2}}{\sqrt{1 \frac{v^2}{c^2}}}$ (D) $x_2' x_1' = \frac{(x_1 x_2) \cdot \frac{v^2}{c^2}}{\sqrt{1 \frac{v^2}{c^2}}}$
- 25. Assume that a source of light S is moving towards an observer O with velocity v. In the rest frame of the source, the frequency of the emitted radiation is v_S . What is the value of the frequency recorded by the observer?

 - (A) $v_0 = v_S \left(1 + \frac{v}{c} \right)$ (B) $v_0 = \frac{v_s}{\sqrt{\left(1 \frac{v^2}{c^2} \right)}}$
 - $(C) \quad v_0 = \frac{v_s}{1 \frac{v}{v}}$
- (D) $v_0 = v_s \cdot \sqrt{\frac{1 + \frac{v}{c}}{1 \frac{v}{c}}}$
- The reciprocal lattice of a simple cubic structure is another simple cubic structure. If the 26. lattice constant of the direct lattice be a, what is the lattice constant of the reciprocal lattice?
 - (A) a
- (B) $\frac{1}{2\pi^2}$ (C) $\frac{1}{3}$
- (D) $\frac{2\pi}{3}$
- A thin-walled vessel of volume V is kept at constant temperature T. An ideal gas slowly 27. leaks out of the vessel through a hole of area A into surrounding vacuum. The mean velocity of the gas molecules is \bar{v} . Find the time required for the pressure in the vessel to drop to 1/eof its original value.
 - $(A)\frac{2V}{2A}$
- (B) $\frac{V}{\bar{a}A}$
- $(C)\frac{V}{2\bar{n}A}$
- (D) $\frac{4V}{54}$
- A sphere, having moment of inertia (I) is suspended from a thin massless filament of 28. torsional rigidity c in a gas at temperature T. Let θ be the angle through which the sphere is found to be rotated at some instant of time. What is the mean value of $\overline{\theta^2}$?

- (A) $\overline{\theta^2} = kT/2c$ (B) $\overline{\theta^2} = kT/c$ (C) $\overline{\theta^2} = kT/I$ (D) $\overline{\theta^2} = kT/\sqrt{cI}$
- Blackbody radiation at temperature T_i fills a cavity of volume V. The system expands 29. adiabatically and reversibly to a volume equal to 8V. The final temperature of the system is given by
 - (A) $T_f = \frac{1}{8}T_i$ (B) $T_f = \frac{1}{2}T_i$ (C) $T_f = T_i ln8$ (D) $T_f = 2T_i$

30. What is the efficiency of a reversible engine operating around the cycle illustrated?

Entropy S (Joules/ "K)

- (A) 20%
- (B) 33.3%
- (C) 17.5%
- (D) 15%
- A solid body of density 5 gm.cm⁻³ melts at the pressure $5 \times 10^6 dynes cm^{-2}$ and the absolute 31. temperature 300 K to form a liquid of density 2gm.cm⁻³. The latent heat of melting per gram of the solid is 10 Joules. What is the change of internal energy resulting from the melting of a gram of the solid?
 - (A) 0.985 *Joules*
- (B) 0
- (C) 9.85 *Joules*
- (D) 2.355 *Joules*
- 32. Consider an isothermal column of air near the earth. If T be the absolute temperature, and n(z) be the density of molecules at the height z above the earth, then

$$(A) n(z) = n(0)$$

(B)
$$n(z) = n(0)(1 - \frac{mgz}{kT})$$

(C)
$$n(z) = \frac{n(0)}{1 + \frac{mgz}{kT}}$$

(A)
$$n(z) = n(0)$$
 (B) $n(z) = n(0)(1 - \frac{mgz}{kT})$
(C) $n(z) = \frac{n(0)}{1 + \frac{mgz}{kT}}$ (D) $n(z) = n(0)e^{-\frac{mgz}{kT}}$

[m, g (assumed constant) and k have their usual meanings]

For what value of energy (ε) is the occupation number of a state equal to $\frac{1}{2}$ for a system 33. comprising of identical bosons? Assume chemical potential $\mu > -kT$.

(A)
$$\varepsilon = |\mu|$$

(B)
$$\varepsilon = 0$$

(C)
$$\varepsilon = \mu + kT \ln 2$$
 (D) $\varepsilon = \mu + kT \ln 3$

D)
$$\varepsilon = u + kT \ln 3$$

[T = Temperature of the system]

- 34. Estimate the minimum lens diameter required to resolve objects 1cm apart at a distance of 1000 *metres*? Assume that the wavelength of light is 550 *nm*.
 - (A) 10 cm
- (B) 2.54 cm
- (C) 6.71 cm
- (D) 3.36 cm
- A projector makes the image of a slide on a screen 5 m from the lens. If the 2.5 cm 35. dimension of the slide is magnified to 1.2 m, what is the focal length of the lens?
 - (A) 5/49 m
- (B) 5/94 m
- (C) 1/10 m
- (D) 1/5 m

36.	Circularly polarized light is passed through a quarter-wave-plate. What is the general polarization state of the outgoing light?				
	(A) Elliptically pol	arized light	(B) Linearly polarized lig	ght	
	(C) Circularly polar	rized light	(D) None of these	-	
37.	Suppose right-handed circularly polarized light (for which the electric field is seen to rotate in the clockwise direction when the observer looks back towards the source) falls normally on the bottom surface of a horizontal absorbing slab. The slab is suspended by a vertical thread. If the circularly polarized light beam has a power of 1 <i>watt</i> and the wavelength of light is 6200Å, and if all of this light is absorbed by the slab, what is the torque exerted on the slab?				
	(A) 1×10^{-9} Newto	(A) 1×10^{-9} <i>Newton.m</i> .		(B) $1.645 \times 10^{-9} \ dyne.cm$.	
	(C) $3.29 \times 10^{-9} dy$	rne.cm.	(D)1.645 \times 10 ⁻⁹ <i>Newton</i>	n.m.	
38.	1.4. If the angle of the wed	terference fringes are produced by a thin, wedge-shaped film of plastic of refractive index 4. If the angle of the wedge (α) is 20 seconds of arc and the distance between the fringes is 5mm, what is the wavelength of the incident light? [Assume that the light falls normally or ne face of the plastic.]			
	(A) 5460 Å	(B) 6787 Å	(C) 5893 Å	(D) 6943 Å	
39.	For maximum polarization of light by reflection from a transparent dielectric medium having refractive index 1.5, what is the angle between the reflected and the refracted rays?		d the refracted rays?		
	1 1 1 56 20	(B) 90°	(C) 41.8°	(D) 60°	
	(A) 56.3°	(B) 50	(0) 11.0	(<i>D</i>) 00	
40.			but absent from plane mirror		
40.		present in lenses			
40.	What type of aberration is	present in lenses	but absent from plane mirr	rors?	
40.	What type of aberration is (A) Spherical aberr	present in lenses ation or which $V = V$	but absent from plane mire (B) Astigmatism (D) Chromatic aberration $(x) = 0 \text{ if } -1 < x < 1 \text{ an}$	From $V = \infty$ outside this	
	What type of aberration is (A) Spherical aberr (C) Coma Consider a potential well for	present in lenses ation or which $V = V$ of a particle trap $\cos \frac{3\pi x}{2} + \sin 3\pi x$	but absent from plane mire (B) Astigmatism (D) Chromatic aberration $(x) = 0 \text{ if } -1 < x < 1 \text{ and } x < 1$	From $V = \infty$ outside this	
	What type of aberration is (A) Spherical aberr (C) Coma Consider a potential well for range. The wave function of $\psi = \begin{cases} A \cos \frac{\pi x}{2} + \frac{1}{4}e^{-\frac{x^2}{4}} \end{cases}$	present in lenses ation or which $V = V$ of a particle trappose $\frac{3\pi x}{2} + \sin 3\pi x$ well	but absent from plane mire (B) Astigmatism (D) Chromatic aberration $f(x) = 0$ if $-1 < x < 1$ and the ped in this well is given by at, inside the well	From $V = \infty$ outside this	
	What type of aberration is (A) Spherical aberr (C) Coma Consider a potential well for range. The wave function of $\psi = \begin{cases} A\cos\frac{\pi x}{2} + \frac{1}{4}e^{-\frac{x^2}{4}} \\ 0, outside the second of the sec$	present in lenses ation or which $V = V$ of a particle trappose $\frac{3\pi x}{2} + \sin 3\pi x$ well ou may assume	but absent from plane mire (B) Astigmatism (D) Chromatic aberration (x) = 0 if $-1 < x < 1$ and the ped in this well is given by at, inside the well that A is a real number].	From $V = \infty$ outside this	
	What type of aberration is (A) Spherical aberr (C) Coma Consider a potential well for range. The wave function of $\psi = \begin{cases} A\cos\frac{\pi x}{2} + \frac{1}{4}e^{-\frac{\pi x}{2}} \\ 0, \text{ outside the wave of } A? [Y] \end{cases}$	present in lenses ation or which $V = V$ of a particle trapped $\cos \frac{3\pi x}{2} + \sin 3\pi x$ well ou may assume $(B) A = \frac{1}{4}\sqrt{15}$	but absent from plane mire (B) Astigmatism (D) Chromatic aberration (x) = 0 if $-1 < x < 1$ and the ped in this well is given by at, inside the well that A is a real number].	rors? In the state of the sta	
41.	What type of aberration is (A) Spherical aberr (C) Coma Consider a potential well for range. The wave function of $\psi = \begin{cases} A\cos\frac{\pi x}{2} + \frac{1}{4}e^{-\frac{x^2}{4}} \\ 0, \text{ outside the wave of } A? \text{ [Y]} \end{cases}$ (A) $A = 4\sqrt{\frac{1}{33}}$	present in lenses ation or which $V = V$ of a particle trapped $\cos \frac{3\pi x}{2} + \sin 3\pi x$ well ou may assume (B) $A = \frac{1}{4}\sqrt{15}$ of an electron?	but absent from plane mire (B) Astigmatism (D) Chromatic aberration (x) = 0 if $-1 < x < 1$ and the ped in this well is given by at, inside the well that A is a real number].	From the proof of	

43. A positron has the same mass as an electron but opposite charge and spin magnetic moment. If the proton in a hydrogen atom is replaced by a positron, one gets a positronium atom. What is its binding energy in the ground state? (A) 13.6 *eV* (B) 6.8 eV (C) 27.2 eV (D) 0.0074 eV The formula for the energy levels of a particle of mass m moving in one-dimensional 44. potential $V = V(x) = \begin{cases} \frac{1}{2}m\omega^2 x^2, & x > 0 \\ \infty, & x < 0 \end{cases}$ is given by (A) $E_m = \left(m + \frac{1}{2}\right)\hbar\omega$ (m = 0, 2, 4...)(B) $E_m = \left(2m + \frac{3}{2}\right)\hbar\omega \quad (m = 1, 3, 5 \dots)$ (C) $E_m = \left(2m + \frac{3}{2}\right)\hbar\omega$ (m = 0, 1, 2, 3, 4...)(D) None of these Let ψ_{lm} be an eigenstate of L^2 and L_z with eigenvalues $l(l+1)\hbar^2$ and $m\hbar$ respectively. If $\phi =$ 45. $(L_x + iL_y)\psi_{lm}$ is also an eigenstate of L^2 and L_z , then the eigenvalue of L_z for ϕ is (B) $(m-1)\hbar$ (C) $(m+1)\hbar$ (D) ϕ is not an eigenstate of L_z $(A) m\hbar$ What is the probability of decay during the 101st year of a radioactive atom having a mean 46. life of 10^3 years? (A) 10^{-3} (B) 10^{-1} (C) $10^{-3.1}$ (D) $10^{-2.9}$ What accounts for the stability of bound neutrons in some nuclei, e. g. in $^{14}_{7}N$? 47. (A) For these nuclei, the number of neutrons equals a magic number (B) The principle of conservation of energy (C) The Pauli exclusion principle (D) The principle of conservation of angular momentum If a beam of photons is passed through a Stern-Gerlach apparatus, into how many 48. component beams will it split? (B) 1 (A) 2(C) 3 (D) 1 or 2, depending on the state of polarization of the beam

49.	The number $(1001.0101)_2$ is the same as		
	(A) (9.3125) ₁₀ (B) (9. 5) ₁₀ (C) (1001.0101) ₁₀ (D) None of these		
50.	If A, B and C are Boolean numbers, then $(A + B)(\bar{A} + C)$ equals		
	(A) BC (B) $\bar{A}B + BC$ (C) $\bar{A}B + AC$ (D) 1		

QP-PUMDET-2018-Physics FINAL.docx