PUMDET-2023

Subject : MATHEMATICS

(Booklet Number)

Duration: 90 Minutes
No. of Questions : 50
Full Marks: 100

INSTRUCTIONS

1. All questions are of objective type having four answer options for each. Only one option is correct. Correct answer will carry full marks 2. In case of incorrect answer or any combination of more than one answer, $1 / 2$ mark will be deducted.
2. Questions must be answered on OMR sheet by darkening the appropriate bubble marked $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D .
3. Use only Black/Blue ink ball point pen to mark the answer by complete filling up of the respective bubbles.
4. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
5. Write question booklet number and your roll number carefully in the specified locations of the OMR Sheet. Also fill appropriate bubbles.
6. Write your name (in block letter), name of the examination centre and put your signature (as is appeared in Admit Card) in appropriate boxes in the OMR Sheet.
7. The OMR Sheet is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR Sheet may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
8. Candidates are not allowed to carry any written or printed material, calculator, pen, docupen, log table, wristwatch, any communication device like mobile phones, bluetooth devices etc. inside the examination hall. Any candidate found with such prohibited items will be reported against and his/her candidature will be summarily cancelled.
9. Rough work must be done on the question booklet itself. Additional blank pages are given in the question booklet for rough work.
10. Hand over the OMR Sheet to the invigilator before leaving the Examination Hall.
11. Candidates are allowed to take the Question Booklet after examination is over.

Signature of the Candidate :
(as in Admit Card)
Signature of the Invigilator : \qquad

PUMDET-2023
SPACE FOR ROUGH WORK

PUMDET-2023

1. Consider the polynomial

$$
\mathrm{p}(\mathrm{z})=\mathrm{z}^{5}+\mathrm{z}^{3}+5 \mathrm{z}^{2}+2
$$

In the annular region $1<|z|<2, p(z)$ has
(A) 5
(B) 3
(C) 2
(D) 1
zero or zeros
2. Let $f(z)=\frac{z+1}{z \sin z}$, then f has
(A) No singularity
(B) Removable discontinuity at $\mathrm{z}=0$
(C) Pole of order 2 at $\mathrm{z}=0$
(D) Simple pole at $\mathrm{z}=0$
3. Let $f(z)=|z-a|^{2}$, ' a ' is fixed point in \mathbb{C}. Then
(A) f is discontinuous function
(B) f is differentiable everywhere in \mathbb{C}
(C) f is differentiable only at a point in \mathbb{C} but nowhere else
(D) f is not differentiable anywhere in \mathbb{C}
4. Let $f(z)=x^{2} y^{2}+i \cdot 2 x^{2} y^{2}$. Then
(A) f is discontinuous everywhere in \mathbb{C}
(B) f is analytic everywhere in \mathbb{C}
(C) f is nowhere analytic in \mathbb{C}
(D) Cauchy-Riemann equations do not hold anywhere in \mathbb{C}
5. $\int_{1}^{\infty} \frac{\cos a x-\cos b x}{x} d x, a, b \in \mathbb{R}^{+}$, then
(A) The integral is proper
(B) The integral is divergent
(C) The integral is convergent
(D) $\int_{1}^{x} f(x) d x$ is unbounded $\left(f(x)=\frac{\cos a x-\cos b x}{x}\right)$

PUMDET-2023

6. The solution of $x y \frac{\partial^{2} z}{\partial x \partial y}-\frac{\partial z}{\partial y} y=x^{2}$ is given by
(A) $\mathrm{z}=\mathrm{xy} \log (\mathrm{xy})+\mathrm{f}(\mathrm{x}, \mathrm{y})$
(B) $z=x \log y+y \log x+f(x)$
(C) $z=y^{2} \log x+y f(x)+f(y)$
(D) $z=x^{2} \log y+x f(y)+g(x)$

Here $\mathrm{x}>0, \mathrm{y}>0$ and f, g are arbitrary functions.
7. Solution of $(y+z) p-(x+z) q=x-y,(p, q$ have their usual meaning) is given by
(A) $f(y+z,-x-z)=0$
(B) $f\left(z x+y-z, x^{2}+y^{2}+z^{2}\right)=0$
(C) $\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, \mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}\right)=0$
(D) $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
8. Let $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be metric spaces and $(\mathrm{X} \times \mathrm{Y}, \mathrm{d})$ denote the product space with the product metric d. Then
(A) $(\mathrm{X} \times \mathrm{Y}, \mathrm{d})$ is never complete
(B) $(\mathrm{X} \times \mathrm{Y}, \mathrm{d})$ is complete if any one of $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be complete
(C) $(\mathrm{X} \times \mathrm{Y}, \mathrm{d})$ is complete iff $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ both are complete
(D) $(\mathrm{X} \times \mathrm{Y}, \mathrm{d})$ is complete if $\mathrm{d}_{1}(\mathrm{x}, \mathrm{y})<\mathrm{d}_{2}(\mathrm{x}, \mathrm{y})$
9. Let $X=\mathbb{N}$ and $d: X \times X \rightarrow \mathbb{R}$ be given by

$$
\mathrm{d}(\mathrm{~m}, \mathrm{n})=\frac{|\mathrm{m}-\mathrm{n}|}{\mathrm{mn}} \text { for all } \mathrm{m}, \mathrm{n} \in \mathbb{N}
$$

Then
(A) ($\mathrm{X}, \mathrm{d})$ is not a metric space
(B) (X, d) is pseudo metric space
(C) ($\mathrm{X}, \mathrm{d})$ is complete metric space
(D) (X, d) is incomplete metric space

PUMDET-2023

10. Let $X=\left\{(x, y) \in \mathbb{R}: x^{2}+y^{2}<1\right\}$ and metric d be defined by $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]}$
(A) (X, d) is a complete metric space
(B) (X, d) is incomplete metric space
(C) No sequence in (X, d) is a Cauchy sequence
(D) All sequences in (X, d) are Cauchy
11. Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice and $E_{k}=\{(a, b) \in S: a b=k\}$. If $p_{k}=P\left(E_{k}\right)$, there the correct among the following is
(A) $\mathrm{p}_{9}<\mathrm{p}_{19}<\mathrm{p}_{2}$
(B) $\mathrm{p}_{5}<\mathrm{p}_{21}<\mathrm{p}_{1}$
(C) $\mathrm{p}_{9}<\mathrm{p}_{18}<\mathrm{p}_{6}$
(D) $\mathrm{p}_{4}<\mathrm{p}_{13}<\mathrm{p}_{1}$
12. $\oint_{C}\left(\cos x d x+2 y^{2} d y+z d z\right)$, where C is the curve $x^{2}+y^{2}=1, z=1$, is given by
(A) 0
(B) 1
(C) 2
(D) $\frac{1}{2}$
13. S.H.M. in a resisting medium is
(A) Forced Oscillation
(B) Damped Oscillation
(C) Damped Forced Oscillation
(D) Not Oscillatory motion

PUMDET-2023

14. If a particle describes a curve $\mathrm{r}=\mathrm{ae}^{\mathrm{b} \theta},(\mathrm{a}, \mathrm{b}>0)$ with a constant angular velocity, then the cross-radial acceleration
(A) varies as the distance from the pole
(B) varies as the square of the distance from the pole
(C) varies inversely as the distance from the pole
(D) varies inversely as the square of the distance from the pole
15. The value of $\Delta^{n}\left(a^{x}\right)$ is
(A) $\left(a^{h}-1\right)^{n} a^{x}$
(B) $\left(a^{h}+1\right)^{n} a^{x}$
(C) $\left(a^{n h}-1\right)^{n} a^{x}$
(D) $\left(a^{\text {nh }}+1\right)^{\mathrm{n}} \mathrm{a}^{\mathrm{x}}$
16. For the fixed point iteration $\mathrm{x}_{\mathrm{k}+1}=\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right), \mathrm{k}=0,1,2, \ldots$. , consider the following statements P and Q:

P: If $g(x)=1+\frac{2}{x}$, then fixed point iteration converges to 2 for all $x_{0} \in[1,100]$
Q: If $g(x)=\sqrt{2+x}$, then fixed point iteration converges to 2 for all $x_{0} \in[0,100]$
Then
(A) both P and Q are true
(B) only P is true
(C) only Q is true
(D) neither P nor Q is true
17. If the primal has no feasible solution, then its dual has
(A) bounded solution
(B) feasible solution
(C) either unbounded or no feasible solution
(D) feasible solution, but no optimal solution

PUMDET-2023

18. In a transportation problem with m origin and n destination, if the number of allocations is equal to $m+n-1$, then the solution is called
(A) degenerate solution
(B) non-feasible solution
(C) unbounded solution
(D) non-degenerate solution
19. Let $f(x)$ be continuously differentiable on the interval $(0, \infty)$ such that $f(1)=1$ and $\lim _{t \rightarrow x} \frac{t^{2} f(x)-x^{2} f(t)}{t-x}=1$ for each $x>0$. Then $\int_{1}^{2} f(x) d x$ is
(A) $\frac{1}{3} \log 2+\frac{14}{9}$
(B) $\frac{1}{3} \log 2-\frac{14}{9}$
(C) $\frac{1}{2} \log 3+\frac{14}{9}$
(D) $\frac{1}{2} \log 3-\frac{14}{9}$
20. The solution of the Ordinary Differential Equation $\frac{d y}{d x}+P(x) y=Q(x)$ may be expressed in the form
(A) $y=e^{\int Q d x}+C$
(B) $y=e^{-\int P d x}+C$
(C) $y=e^{\int(P+Q) d x}+C$
(D) $\quad \mathrm{y}=\frac{\mathrm{Q}}{\mathrm{P}}-\mathrm{e}^{-\int \mathrm{Pdx}} \cdot\left\{\mathrm{C}+\mathrm{e}^{\int \mathrm{Pdx}} \mathrm{d}\left(\frac{\mathrm{Q}}{\mathrm{P}}\right)\right\}$

Where C is the integrating constant
21. The equation of the right circular cone whose vertex is at the origin, axis is the X-axis and the semi-vertical angle is $\frac{\pi}{3}$, is
(A) $\mathrm{x}^{2}+\mathrm{y}^{2}=3 \mathrm{z}^{2}$
(B) $\mathrm{z}^{2}+\mathrm{x}^{2}=3 \mathrm{y}^{2}$
(C) $y^{2}+z^{2}=3 x^{2}$
(D) $y^{2}+x^{2}=9 z^{2}$

PUMDET-2023

22. If the polar of a point with respect to the parabola $y^{2}=4 a x,(a>0)$ touches the parabola $x^{2}=4 b y,(b>0)$, then the locus of the point is the
(A) $\mathrm{x}^{2}+\mathrm{y}^{2}=4 \mathrm{a}^{2}$
(B) $y^{2}(x+2 b)+4 a^{2}=0$
(C) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(D) $x y+2 a b=0$
23. $\sin \mathrm{z}=2$ is
(A) solvable neither in \mathbb{R} nor in \mathbb{C}
(B) solvable in \mathbb{R} and \mathbb{C}
(C) solvable in \mathbb{C} only and then one of the expressions is $\mathrm{z}=\left(2 \mathrm{n}+\frac{1}{2}\right) \pi-\mathrm{i} \log (2+\sqrt{3})$ where n is integer
(D) Solvable in \mathbb{C} and $\mathrm{z}=\frac{\mathrm{n} \pi}{2}+\left(\frac{\pi}{2}-2 \mathrm{n} \pi\right) \mathrm{i}, \mathrm{n}$ is integer
24. Which one of the following is correct?
(A) If the quotient group G / H is cyclic, then G must be cyclic.
(B) \exists a non-cyclic group H for which quotient group G / H is cyclic.
(C) Every group G is isomorphic to a permutation group.
(D) An infinite cyclic group has infinitely many generators.
25. Let $R \equiv M_{2}(z), I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right): a, b \in z\right\}$, then
(A) I is not a subring of R
(B) I is an Ideal of R
(C) I is a subring but not any Ideal of R
(D) I is a left Ideal of R only

PUMDET-2023

26. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{3}+4 \mathrm{x}^{2}+\mathrm{C}, \mathrm{C} \in \mathbb{R}$, then in $(1,2)$
(A) $\mathrm{f}(\mathrm{x})$ has atmost one zero for $-1<\mathrm{C}<0$
(B) $\mathrm{f}(\mathrm{x})$ cannot have any zero in $(1,2)$
(C) $f(x)$ has infinitely many zeros for all $C \in \mathbb{R}$
(D) $f(x)$ has two zeros in $(1,2)$ for all $C \in \mathbb{R}$
27. If a prime integer p divides the order of a Group G, then G contains
(A) at least one normal subgroup of order p
(B) no normal subgroup of order p
(C) infinitely many normal subgroups
(D) exactly one normal subgroup
28. $\quad \operatorname{det} \mathrm{A}=\left|\begin{array}{llll}2021 & 2020 & 2020 & 2020 \\ 2021 & 2021 & 2020 & 2020 \\ 2021 & 2021 & 2021 & 2020 \\ 2021 & 2021 & 2021 & 2021\end{array}\right|$ is
(A) 1
(B) 0
(C) 2021
(D) 2020
29. The last digit of $(2004)^{5}$ is
(A) 4
(B) 8
(C) 6
(D) 2
30. Let G be a group of order 28 . Then
(A) G contains elements of order 7
(B) G may not contain any elements of order 7
(C) G contains elements of order 12
(D) G contains elements of order 5

PUMDET-2023

31. Which one is true ?
(A) Groups of order pq, p and q are prime, are simple groups
(B) Group of order pq, p and q are prime, is cyclic
(C) Let G be a finite group of order 2 n , where n is odd integer and greater than 1 . Then G is not simple
(D) Groups of order 56 are simple groups
32. A subset $\mathrm{W}(\subset \mathbb{R})$ is called a Ring if it contains 1 and if $\forall \mathrm{a}, \mathrm{b} \in \mathrm{W}$, the numbers $\mathrm{a}-\mathrm{b}$ and ab are also in W. Let $S=\left\{\frac{m}{2^{n}}: m, n\right.$ are integers $\}$ and $T=\left\{\frac{p}{q}: p, q\right.$ are integers and q odd $\}$, Then
(A) neither S nor T is a Ring
(B) S is a Ring but T is not a Ring
(C) T is a Ring but S is not a ring
(D) Both S and T are Rings
33. Let $\mathrm{A}=\left(\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3\end{array}\right)$. Then
(A) Eigen values of A are real but not distinct
(B) Eigen vectors of A are linearly dependent
(C) A is diagonalizable
(D) Eigen values of A are not all real

PUMDET-2023

34. Consider the linear transformation (T):

$$
\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)
$$

Then
(A) T is one-to-one
(B) Ker T consists of elements of form (a, b, c) where $a^{2}+b^{2}=c^{2}$
(C) Ker T consists of elements of form ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) where $\mathrm{a}^{2}+\mathrm{b}^{2}=3 \mathrm{c}^{2}$
(D) Ker T consists of elements of form (a, b, c) where $a^{2}+b^{2}=2 c^{2}$
35. Consider the curve represented by $y=2-\left|x^{5}-1\right|$. Then
(A) Curve has no point of inflexion
(B) $(0,1)$ is a point of inflexion
(C) $(1,0)$ is a point of inflexion
(D) $(0,0)$ is a point of inflexion
36. The volume of the catenoid formed by the revolution about the x-axis, of the area bounded by the catenary $y=\frac{a}{2}\left(e^{x / a}+e^{-x / a}\right)$, the y-axis, the x-axis and ordinate is
(A) $\frac{\pi a}{2}(s y+a x)$
(B) $\pi(s y+a x)$
(C) $\frac{\pi \mathrm{a}}{2}(\mathrm{sy}-\mathrm{ax})$
(D) $\quad \pi[(s y+a x)-a]$
where s is the length of the arc between $(0, a)$ and (x, y)

PUMDET-2023

37. Consider the curve Γ represented by
$f(x, y)=y^{2}-2 x^{2} y-x^{4} y-x^{4}=0$
Then
(A) Γ has no double point
(B) Γ has a node at $(0,0)$
(C) Γ has a cusp of second species
(D) Γ has a cusp of first species
38. Let Γ denote the graph of f defined by

$$
y=f(x)=\log \frac{2 x-1}{x+2} \text { on }(-\infty,-2) \cup\left(\frac{1}{2}, \infty\right)
$$

Then
(A) the curve has no asymptote
(B) the curve has only horizontal asymptote
(C) the curve has only vertical asymptote
(D) $\mathrm{x}=\frac{1}{2}, \mathrm{x}=-2$ and $\mathrm{y}=\log 2$ are asymptotes
39. Let $f(x, y)=\left(x^{3}+y^{3}\right)^{1 / 3}$. Then
(A) f is not continuous at $(0,0)$
(B) neither $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}$ nor $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ exists at $(0,0)$
(C) f is differentiable at $(0,0)$
(D) f is not differentiable at $(0,0)$

PUMDET-2023

40. The equation $f\left(\frac{y}{x}, \frac{z}{x}\right)=0$ defines z implicitly as a function of x and y, say $z=g(x, y)$. Given g_{x}, g_{y} are continuous and $D_{2} f\left(\frac{y}{x}, \frac{z(x, y)}{x}\right) \neq 0$. Then
(A) $g(x, y)$ is not homogeneous function of x and y
(B) $g(x, y)$ is a homogeneous function of x and y
(C) $\quad g_{x} g_{y}=0$
(D) $\mathrm{g}_{\mathrm{x}}{ }^{2}+\mathrm{g}_{\mathrm{y}}{ }^{2}=1$
[$\mathrm{D}_{2} \mathrm{f}$ means partial derivative of f with respective to second argument]
41. Let $\mathrm{I}(\mathrm{a}, \mathrm{b})=(\mathrm{a}+\mathrm{b})^{\mathrm{p}}, \mathrm{J}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{\mathrm{p}}+\mathrm{b}^{\mathrm{p}}, 0 \leq \mathrm{p} \leq 1$. Then
(A) $\mathrm{I}(\mathrm{a}, \mathrm{b}) \geq \mathrm{J}(\mathrm{a}, \mathrm{b})$
(B) \quad ($\mathrm{a}, \mathrm{b}) \leq \mathrm{J}(\mathrm{a}, \mathrm{b})$
(C) no specific order relation exists between $\mathrm{I}(\mathrm{a}, \mathrm{b})$ and $\mathrm{J}(\mathrm{a}, \mathrm{b})$
(D) \quad I $(\mathrm{a}, \mathrm{b}) \geq \mathrm{J}(\mathrm{a}, \mathrm{b})$ in $0 \leq \mathrm{p} \leq \frac{1}{2}$ and I $(\mathrm{a}, \mathrm{b}) \leq \mathrm{J}(\mathrm{a}, \mathrm{b})$ in $\frac{1}{2} \leq \mathrm{p} \leq 1$
42. Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be of Bounded Variation (BV) in $[\mathrm{a}, \mathrm{b}]$ and there exists a function $F:[a, b] \rightarrow \mathbb{R}$ such that $F^{\prime}=f$ in $[a, b]$. Then
(A) f has discontinuity of both kind
(B) f has discontinuity of first kind only
(C) f has discontinuity of second kind only
(D) f is continuous in $[\mathrm{a}, \mathrm{b}]$

PUMDET-2023

43. Let $f_{n}(x)=x^{n}-x^{2 n}$ in $[0,1]$. Then
(A) $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}_{\mathrm{n}}$ is not pointwise convergent in [0, 1]
(B) $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}_{\mathrm{n}}$ is pointwise convergent but not uniformly convergent in [0, 1]
(C) $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}_{\mathrm{n}}$ is uniformly convergent in $[0,1]$
(D) $\lim _{n \rightarrow \infty} f_{n}(x)$ is not bounded
44. Let $u(x)=2+2 x+\sin 2 x, v(x)=(2 x+\sin 2 x) e^{\sin x}$. Then
(A) $\lim _{x \rightarrow \infty} \frac{u(x)}{v(x)}=0, \lim _{x \rightarrow \infty} \frac{\mathrm{u}^{\prime}(\mathrm{x})}{\mathrm{v}^{\prime}(\mathrm{x})}=0$
(B) $\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{u}(\mathrm{x})}{\mathrm{v}(\mathrm{x})}=0$ but $\lim _{|\mathrm{x}| \rightarrow \infty} \frac{\mathrm{u}^{\prime}(\mathrm{x})}{\mathrm{v}^{\prime}(\mathrm{x})}$ does not exist
(C) $\lim _{x \rightarrow \infty} \frac{\mathrm{u}(\mathrm{x})}{\mathrm{v}(\mathrm{x})}=\infty=\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{u}^{\prime}(\mathrm{x})}{\mathrm{v}^{\prime}(\mathrm{x})}$
(D) $\lim _{x \rightarrow \infty} \frac{u(x)}{v(x)}$ does not exist but $\lim _{x \rightarrow \infty} \frac{u^{\prime}(x)}{v^{\prime}(x)}=0$
45. Let $u_{n}(x)=\frac{\sin 2^{n} \pi x}{2^{n}}, x \in \mathbb{R}$, then
(A) $\quad \sum_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$ is not uniformly convergent on \mathbb{R}
(B) $\quad \sum_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$ can be differentiated term-by-term
(C) $\quad \sum_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}^{\prime}(\mathrm{x})$ is convergent in \mathbb{R}
(D) $\quad \sum_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$ cannot be differentiated term-by-term
46. Let $I(R)=\int_{0}^{\pi / 2} e^{-R \sin x} d x, J(R)=\frac{\pi}{2 R}\left(1-e^{-R}\right), R>0$. Then
(A) $\quad \mathrm{I}(\mathrm{R}) \leq \mathrm{J}(\mathrm{R})$
(B) $\quad \mathrm{I}(\mathrm{R})>\mathrm{J}(\mathrm{R})$
(C) $\quad \mathrm{I}(\mathrm{R})=\mathrm{J}(\mathrm{R})$
(D) no specific order relation exists

PUMDET-2023

47. Let $I_{n}=\int_{0}^{1} e^{x^{2}} \sin (n x) d x,(n \in \mathbb{N})$. Then $\lim _{n \rightarrow \infty} I_{n}$
(A) does not exist
(B) is 0
(C) is 1
(D) is e
48. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let $\int_{0}^{2 \mathrm{x}} \mathrm{f}(3 \mathrm{t}) \mathrm{dt}=\frac{\mathrm{x}}{\pi} \sin (\pi \mathrm{x}) \forall \mathrm{x} \in \mathbb{R}$. Then $\mathrm{f}\left(\frac{1}{2}\right)$ is
(A) $\frac{1}{2}$
(B) $\frac{3+2 \sqrt{3}}{16}$
(C) $\frac{6+\pi \sqrt{3}}{24 \pi}$
(D) $\frac{6-\pi \sqrt{3}}{12 \pi}$
49. The series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(A) is divergent
(B) is convergent and represents 2 in the number scale
(C) represents e
(D) represents $\log _{\mathrm{e}} 2$
50. The series $\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}} \ln \mathrm{n}}{\mathrm{n}}$
(A) consists of terms which are increasing
(B) the $\mathrm{n}^{\text {th }}$ term does not tend to zero
(C) is convergent
(D) $\mathrm{n}^{\text {th }}$ term $\rightarrow \infty$ and so the series is divergent

SPACE FOR ROUGH WORK

