NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges

PROPOSED STRUCTURE OF <u>PG - MICROBIOLOGY</u> SYLLABUS

2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation					
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman				
2.	Prof. O.P.S. Negi Vice-Chancellor , Uttarakhand Open University	Member				
3.	Prof. P. P. Dhyani Vice-Chancellor, Sri Dev Suman Uttarakhand University	Member				
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member				
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member				
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member				
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member				

Name	Designation	Affiliati
		on
Prof. Veena Pande	Professor & Head	Department of Biotechnology,
		Kumaun University Nainital-Uttarakhand
Dr. Tapan K. Nailwal	Associate Professor	Department of Biotechnology,
-		Kumaun University Nainital-Uttarakhand
Dr. Rishendra Kumar	Assistant Professor	Department of Biotechnology,
		Kumaun University Nainital-Uttarakhand
Dr. Santosh K. Upadhyay	Assistant Professor	Department of Biotechnology,
		Kumaun University Nainital-Uttarakhand
Dr. Mayank Pandey	Assistant Professor	Department of Biotechnology,
	(contractual)	Kumaun University Nainital-Uttarakhand
Dr. Praveen Dhyani	Assistant Professor	Department of Biotechnology,
	(contractual)	Kumaun University Nainital-Uttarakhand

SYLLABUS PREPARATION COMMITTEE

EXPERT COMMITTEE

Name	Designation	Affiliation
Prof. R. L. Singh	Vice Chancellor	N. P. University, Medininagar, Palamu,
		Jharkhand
Prof. B. D. Lakhchaura	Retired Professor	Department of Biochemistry, College of
		Veterinary Sciences,
		G. B. P. U. A. & T. Pantnagar
Prof. N. K. Singh	Professor	Department of Plant Breeding & Genetics,
		College of Agriculture,
		G. B. P. U. A. & T. Pantnagar
Dr. Anshulika Upadhyay	Assistant Professor	Dept. of Biotechnology, MBPG College,
	(Contractual)	Haldwani,
		Kumaun University Nainital

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
			chelor (Research) in Micro	biology	
4	VII	PBT01- (T/P)	Biochemistry	Theory + Practical	4 + 1
		PBT02- (T/P)	Molecular Biology	Theory + Practical	4 + 1
		PBT03- (T/P)	Microbiology and Industrial Applications	Theory + Practical	4 + 1
		PBT04- (T)	Biostatistics and Computer Applications	Theory	5
		PBT05- (T)	Environmental Biochemistry and Biotechnology	Theory	5
					Total : 25
	VIII	PBT06- (T/P)	Genetic Engineering	Theory + Practical	4 + 1
		PBT07- (T/P)	Analytical Techniques	Theory + Practical	4 + 1
		PBT08- (T)	Molecular Virology	Theory	5
		PBT09- (T)	Cell and Developmental Biology	Theory	5
		PMB01- (T/P)	Microbiological Techniques	Theory + Practical	4+1
		PMB-E	Elective		4
					Total : 29
			Masters in Microbiolog	gy	
5	IX	PMB02- (T)	Applied Microbiology	Theory	5
		PBT12 (T)	Bioprocess Engineering and Technology	Theory	5
		PMB03 (T)	Bacterial Metabolism	Theory	5
		PBT14- (T)	Molecular Genetics	Theory	5
		PBT15- (T/P)	Immunology and Immunotechnology	Theory + Practical	4 + 1
					Total : 25
	X	PMB16	Research Project		25
					Total : 25

Semester-Wise Titles of the Papers in M.Sc. Microbiology

Elective papers offered						
Course Code	Course CodePaper TitleTheory/Practical					
PMB-E-01 (T)	Agriculture and Environmental	Theory	4			
	Microbiology					
PMB-E-02 (T)	Industrial Microbiology	Theory	4			
PBT01- (T/P)	Biochemistry*	Theory + Practical	4+1			
PBT02- (T/P)	Molecular Biology*	Theory + Practical	4+1			
PBT10- (T/P)	Plant Biochemistry and Biotechnology*	Theory + Practical	4+1			

*Elective for other programs

Purpose of the Program

Microbiology is a classical science and has found application in diverse areas of studies and research. The purpose of the postgraduate Microbiology program at the University and College level is to prepare our students for all those fields where knowledge of Microbiology is required for Research and Development and academic professionals in various industries, research institutions and Universities/Colleges.

Program Objectives (POs)

Students will be practitioner microbiologists and researchers; they will function in their field with ethical awareness and responsibility. They will interact with their peers in an interdisciplinary way in their work place and society and contribute to sustainable growth of the country. They will pursue higher studies and choose their career paths in teaching or research.

Program's Outcomes

- **PO 1.** Students will develop professional skills through scientific attitude and values. Students will have foundation in the fundamentals and applications of the Microbiological applications required for different jobs.
- **PO 2.** They will be able to demonstrate knowledge for in-depth research to formulate and solve the issues related to Microbiological research.
- **PO 3.** Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- **PO 4.** Students will be able to explore new areas of research in both Microbiology, Biotechnology and allied fields of science and technology.
- **PO 5.** Students will be able to demonstrate skills they will acquire during their study to use modern analytical tools/software/equipment and analyze and solve problems in various courses of Microbiology.
- **PO 6.** Students will be able to apply their knowledge of bacterial metabolism and microbiological techniques to solve water, soil air pollution through bioremediation.
- PO 7. Students will be able to function as a member of an interdisciplinary problem-solving team.

	PROGRAM SPECIFIC OUTCOMES (PSOS)				
	BACHELOR (RESEARCH) IN MICROBIOLOGY				
Fourth Year	This course introduces the foundation of Biochemistry, Molecular Biology, Microbiology and Industrial Applications, Genetic Engineering, Analytical				
I Cal	Techniques, Applied Microbiology and Cell & Developmental Biology along				
	with basics of Biostatistics and Computer Applications.				
	After completion of the course:				
	PSO1. Understand the basic concepts of Genetics and Molecular Biology such				
	as inheritance pattern, DNA replication, transcription and translation.				
	PSO2. Understand the basic structure and concepts of Biomolecules such as				
	Carbohydrates, Lipids, Enzymes, Nucleic acids, Hormones and Vitamins. The				
	students will also develop understanding of coordinated control of metabolism. PSO3. Understand the basic concepts of Microbial Diversity & Systematics,				
	Microbial Growth & Physiology, Microbial Interactions and Infections.				
	PSO4. Understand the basic concepts of Biostatistics tools for recording and				
	analyzing experimental data.				
	PSO5. Understand the basic concepts of Genetic Engineering such as cloning				
	vectors, cloning methodologies and their applications in industry as therapeutics				
	tools.				
	PSO6. Understand the basic concepts of analytical techniques such as				
	Spectroscopy, Chromatography, Centrifugation for sample analysis and their accurate assessment.				
	PSO7. Understand the basic concept of environmental rearrangement to				
	enhance quality surroundings with reference to air, water and soil to mitigate				
	social problems.				
	PSO8. Understand the basic concepts of cell structure, cell organelles, type of				
	cells, cell communication, differential and specialized cells like stem cells for				
	better understanding of the basic unit of life i.e., cell.				
	PSO9. Perform experiments of estimation of amino acids, enzymes etc., by				
	using spectroscopic and chromatographic techniques. PSO10. Perform experiments on sterilization techniques, media preparation and				
	characterization of microorganisms.				
	PSO11. Perform experiments of protein purification and estimation, isolation of				
	plasmid DNA and formation of construct, genomic DNA isolation,				
	electrophoresis, spectroscopy, PCR etc.				
	PSO12. Apply at technical positions in different research laboratories,				
	diagnostic centers and industries.				
Fifth	MASTER IN MICROBIOLOGY This course introduces the foundation of Genomics and Proteomics, Bioprocess				
r ntn Year	Engineering and Technology, Molecular Genetics, Bacterial Metabolism,				
1 041	Microbiological Techniques, Environmental Biochemistry and Biotechnology,				
	Immunology and Immunotechnology and Molecular Virology.				
	After completion of the course:				
	PSO1. Understand the basic concepts of structural organization of genome,				
	genome sequencing projects, protein analysis methods, pharmacogenomics and				
	functional genomics.				

PSO2. Understand the basic concepts of Bioprocess Engineering such as large
scale culture as fermentation and protein generation, upstream and downstream
processing, analysis and application of food processing enzymes and
microorganisms.
PSO3. Understand the basic concepts of bacterial mutants and mutations, gene
transfer in bacteria, regulation of bacteriophage life cycle, Mendelian Genetics,
gene mapping and human genome project population genetics and evolution
PSO4. Understand the basic concepts of environmental biochemistry and
biotechnology, such as environmental pollution, control, remediation and
management, bioaugmentation, alternate source of energy, environment and
health in respect to genetics and human biomonitoring.
PSO5. Understand the concepts of immunology, immune system and response,
B and T cell regulation, antigen-antibody interactions, vaccine and vaccine
technology and clinical immunology.
PSO6. Understand the concepts of Molecular Virology, structure of animal and
plant viruses, general organization of animal and plant viruses, methods to
diagnose animal and plant virus infections.
PSO7. Perform experiments on Immunology such as preparation of human
blood smear and identification of cells, determination of blood groups and Rh
factor, estimation of antiserum, antiserum titer determination by different types
of ELISA, Immunoelectrophoresis and Immunodiagnostics.
PSO8. Study of metabolic pathways involved in release and dissimilation of
substrates by hetero and autotrophs with emphasis on the reactions of industrial
and environmental concern.
PSO9. Fermentation of lactic-acid bacteria, ethanol fermenting organisms,
propionic acid bacteria, enterobacteriacea and clostridia.
PSO10. Bacterial nitrogen fixation and regulation, biochemistry of
methanogenesis and its regulation.
PSO11. Identification and characterization of microorganisms especially of
human interest, introduction to terms and equipments used in microbiological
laboratory, microscopy, cell cytometry.
PSO12. BIOLOG plant method, carbohydrate fermentation, IMVIC test, genus
level identification of bacteria, isolation of halophiles, thermophiles,
psychrophiles and acidophiles.

			Subj	ject: Microbiology			
Year	Semester	Theory Paper	Units	Practical Paper	Units	Research Project	Total Credits of the Year
Fourth Year	VII	Biochemistry	 Chemical Basis of Life Proteins Enzymes Carbohydrates Lipids Nucleic Acids Bioenergetics 	Biochemistry	 Titration of Amino Acids Colorometric determination of pKa Quantitaive estimation of proteins and Sugars Seperation techniques- Centrifugation, Chromatography (Gel Permeation, Ion Exchange, TLC etc.) 		5+5+5+5+5=25 5+5+5+5+4= 29 Grand total =54
		Molecular Biology	 Genome Organization DNA Structure: Replication, Repair & Recombination Prokaryotic & Eukaryotic Transcription Post Transcriptional Modification, Translation & Transport Mutation; Oncogenes and Tumor suppressor gene 	Molecular Biology	 Plasmid DNA isolation and DNA quantification Restriction digestion Preparation of competent cells Agarose gel electrophoresis Restriction Enzyme digestion of DNA Purification of DNA from an agarose gel DNA ligation Transformation of <i>E. coli</i>. With standard plasmids, calculation of transformation efficiency Restriction mapping of recombinant plasmid Polymerase chain reaction RFLP analysis of the PCR product 		
		Microbiology and Industrial Applications	 Microbial Diversity & Systematics Microbial Growth & Physiology Microbial Interactions and Infection Microbes and Environment Industrial Applications 	Microbiology	 Standardization, disinfection, safety in microbiological laboratory Preparation of media for growth of various microorganisms Isolation and maintenance of organisms by plating, straking, serial dilution methods-slants and stab cultures. Storage of microorganisms Gram staining and enumeration of microorganisms 		

		5. Growth curve, measure of bacterial population by turbidometry and studying the effect of temperature, pH, carbon and nitrogen	
Biostatistics and Computer Applications	 Brief description and Tabulation of data and its graphical representation Measure of central tendency and description Simple linear regression and Correlation Introduction of digital computers Flow charts and Programming techniques Introduction to data structures and data base concepts, Introduction to internet and its applications Introduction to MS-office software Introduction to Harvard graphics/Sigma plotter Computer oriented statistical techniques Bio-informatics 		
Environmental Biochemistry and Biotechnology	 Introduction Pollution Control, remediation and management Alternate source of energy Environment and health in respect to genetics 		

VIII	Genetic Engineering Analytical	 Basics Concepts Cloning Vectors Cloning Methodologies PCR and Its Applications Sequencing methods 	Genetic Engineering Analytical	 Isolation of genomic DNA from <i>E</i>. <i>coli</i>. PCR amplification of bacterial/plant/animal-cell genomic region and analysis by agarose gel electrophoresis Preparation of plasmid DNA from <i>E</i>. <i>coli</i> DH5ă and gel analysis Restriction digestion of vector (gel analysis) with restriction endonucleases A. Vector and insert ligation B. Transformation in E.coli DH5ă Plasmid isolation and confirming recombinant by PCR and RE digestion. Transformation of recombinant with IPTG and analysis on SDS-PAGE. Purification of protein on Ni-NTA/Glutathione/Mannose column and analysis of purified by SDS-PAGE. 	
	Techniques	 Basic Techniques Spectroscopy Techniques Chromatography Techniques, Electrophoretic Techniques Centrifugation Radioactivity Advanced Techniques 	Techniques	 Paper chromatography of amino acids 2. TLC of lipids Isolation of plasmid DNA from <i>E.</i> <i>coli</i> Agarose gel electrophoresis of isolated plasmid DNA Extraction and purification of protein from plants and animals SDS-PAGE of BSA and extracted protein 	
	Molecular Virology	 Structure of animal viruses and plant viruses General Genomic organization of animal viruses 			

	3. General Genomic	
	organization of plant viruses	
	4. Methods to diagnose animal	
	virus infections	
	5. Methods to study plant	
	viruses	
Cell and Developmental	1. Cell Theory and Methods of Study	
Biology	2. Membrane Structure and	
	Function	
	3. Organelles	
	4. Endo-membrane System and	
	Cellular Motility	
	5. Cell Communication	
	6. Differentiation of Specialized	
	Cells, Plant Meristem	
	organization and	
	Differentiation	
Microbiological	1. Experiments designed to Microbiological 1. Preparation of culture media-	
techniques	familiarize students with the Techniques nutritional needs of microbes-	
	handling, identification and dehydrated-selective-	
	characterization of differential-autotrophic-	
	microorganisms heterotrophic, adjustment of pH, 2. Introduction to terms and buffers, pure culture techniques.	
	equipments used inpreparation of slants, sub-Microbiological laboratory,culturing.	
	safety precautions, 2. Isolation of pure microbial flora	
	Microscopy from natural and extreme	
	3. Preparation of culture media-	
	nutritional needs of microbes-	
	dehydrated-selective- standard plate count,	
	differentialautotrophic- haemocytometry.	
	heterotrophic 3. Staining: Dye preparation, staining	
	4. Isolation of pure microbial techniques, their applications,	
	flora from natural and Motility (Hanging drop method).	
	extreme environments Microscopy: Microscope and its	
	Biochemical characterization operations, components, type.	
	of bacteria-BIOLOG plant Preservation of microorganisms.	
	method Biochemical characterization of	
	bacteria-BIOLOG plate method,	

				carbohydrate fermentation catalase, peroxidase, indol methyl red, vogus-prausker, citra utilization test (IMVIC), Nitra Reduction Test etc.	e, ie	
		Maste	r in Microbiology			
5	Applied Microbiology Bioprocess Engineering and technology	 Study of microflora with special reference to silage, agro industrial waste, environment, soil fertility and management Scope and importance of microbiology as applied to environment and industry Environmental quality Microbial deterioration of cotton, jute, coir, wool, leather and wood and methods of preservation, Microbiology of biogas generation, utilization of alternate sources of energy, Utilization of agroindustrial waste for microbial biomass and protein Soil fertility and management of agricultural soil Basic Principle of Biochemical Engineering Concepts of Basic Mode of Fermentation Process Downstream Processing 			Research Project	5+5+5+5+25= 50
		4. Applications of Enzymes in Food Processing				

	5. Applications of Microbes in Food process Operations and Production			
Bacterial metabolism	 Metabolic pathways involved in the release and dissimilation of substrates by heterotrophs and autotrophs Thermodynamic considerations 			
	of biological reactions3. Fermentation4. Biochemistry of xenobiotics degradation			
	5. Fixation of molecular nitrogen and regulation			
Molecular Genetics	 Bacterial Mutants and mutations, Gene transfer in bacteria Bacteriophages and Plasmids Mendelian Genetics, Non- Mendelian inheritance patterns Molecular Genetics of Lambda Gene mapping and human genome project, Population genetics and evolution 		1 Demention of human blood	
Immunology and Immunotechnology	concepts and anatomy of the immune systema I2. Immune responses generatedc	and Immunotechnol	 Preparation of human blood smear and identification of cells. Determination of blood 	
	by B and T lymphocytes3. Antigen-antibody interactions4. Vaccine Technology	3	groups. 3. Determination of Rh antigen.	
	5. Clinical Immunology	4	4. Estimation of antiserum by	

		Mancini method.	
	5.	Estimation of antiserum by	
		Ouchterlony method.	
	6.	Antiserum titer	
		determination by ELISA.	
	7.	DOT ELISA for the	
		presence of specific antigen.	
	8.	Immunization, Collection of	
		Serum.	
	9.	Immunoelectrophoresis.	
	10.	-	
		(Demonstration using	
		commercial kits).	

Pattern of examination theory papers

A. Theory

Each theory paper shall consist two sections A and B.

Section A: (Short answers type with reasoning); 25 marks, eight questions of five marks each, any five have to be attempted).

Section B: (Long answers type); 50 marks, one question of ten marks each. Five questions are compulsory (each question from each unit) with internal choice.

B. Internal assessment

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/group discussion/oral presentation/overall performance) during the semester period. Total marks allotted to internal assessment shall be 25. The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/the Principal of the College for uploading onto the University examination portal.

C. Practical

The laboratory work of the students has to be evaluated periodically. The breakup of marks for practical examination for **each semester** would be as follows: Practical exam: 20% marks Viva voce: 20% marks Lab record: 20% marks Spotting: 30% marks Attendance: 10% marks **Total: 150 marks (each semester)**

Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital.

Paper-1 (Theory)						
Course Title: Biochemistry						
Program/Class: Bachelor	Year:	Fourth	Semester: Seven			
(Research) in						
Microbiology						
	Paper 1 Theory Subject: Microbiology					
Course Code: PBT01-(T/P)	Course Code: PBT01-(T/P) Course Title: Biochemis					
Credits: 4		Compulsory				
Max. Marks: 100		Min. Pa	assing Marks:			

Semester-VII Paper-1 (Theory)

Total Number of Lectures = 60

Course Objectives: To develop a clear understanding of the concepts related to structures and functions of biomolecules for better understanding of energetics and regulation of metabolic pathways. To develop hands-on-ability in young minds to plan and execute different biochemical experiments in the laboratory.

Unit	Content	Number of lectures
1	Chemical Basis of Life: Composition of living matter; Water- properties, pH, pKa, Titration curves of weak acids, Buffers, Handerson-Hasselbach equations, ionization and hydrophobicity; Emergent properties of biomolecules in water; Water as a reactant.	8
2	Proteins: Amino acids as building blocks of proteins and their chemical properties, pI and pKa values, Primary, Secondary, Tertiary and Higher order structure of Proteins, Protein Sequencing, Ramchandran Plot, Conjugated proteins-Glycoproteins, Lipoproteins, Heamproteins.	10
3	Enzymes : General principles of catalysis, Quantitation of enzyme activity and efficiency, Enzyme characterization and Michaelis-Menten kinetics, Relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; Single substrate enzymes	10
4	Carbohydrates: Mono- Di- and Polysaccharides, Optical isomerism, Structure of Carbohydrates, Glycolysis, Gluconeogenesis, Pentose phosphate pathways, Citric acid cycle.	8
5	Lipids: Classification and structural analysis of fatty acids, Glycerols, Waxes, Glycolipids, Phospholipids, Sphingolipids, Sterols, Lipoproteins, β-oxidation, Biosynthesis of Cholesterol and Fatty acids	10
6	Nucleic acids: Biosynthetic pathways of purines and pyrimidines, degradation pathways	6
7	Bioenergetics- Basic principles; Equilibria and concept of free energy; Group transfer, concept of Entropy, Enthalpy and free energy, Oxidation and Reduction reactions, Electron Transport Chain, Oxidative phosphorylation; photosynthesis.	8

- (i) David L. Nelson, Michael Cox, Lehninger Principles of Biochemistry: International Edition
- (ii) Victor W. Rodwell, David Bender, Kathleen M. Botham, Peter J. Kennelly, P. Anthony Weil, Harper's Illustrated Biochemistry Thirty-First Edition (A & L LANGE SERIES), 31st Edition
- (iii) Jeremy M. Berg, Lubert Stryer, John Tymoczko, Gregory Gatto, Biochemistry, 9th Edition
- (iv) Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, 5th Edition
- (v) U Satyanarayana, Biochemistry

Suggested online links:

https://www.youtube.com/channel/UCv_PnJwd_q7mAv7nGHw7XHQ, Fundamentals of Biochemistry

<u>https://www.youtube.com/watch?v=CHJsaq2lNjU</u>, Introduction to Biochemistry https://www.biochemistry.org

https://www.organic-chemistry.org, Biochemistry Links - Organic Chemistry Portal https://www.csulb.edu

Semester-VII

Practical

Course Title: Biochemistry

Program/Class: Bachelor (Research) in Microbiology	Year: Fourth	Semester: Seven	
	Practical Subject: Microbiology		
Course Code: PBT01-(T/P)	Course Title: Biochemistry-Practica		
Credits:1		Compulsory	
Max. Marks: 50) Min. I	Passing Marks:	

Total Number of hours = 60

Unit	Contents	Number of hours
1	Titration of Amino Acids.	15
2	Colorimetric determination of pKa.	15
3	Quantitative estimation of Proteins and Sugars.	15
4	Separation techniques- Centrifugation, Chromatography (Gel Permeation, Ion exchange, TLC, etc.)	15

Semester-VII Paper-2 (Theory) Course Title: Molecular Biology					
Program/Class: Bachelor	Year:	Fourth	Semester: Seven		
(Research) in					
Microbiology					
		Paper-2 7	Theory Subject: Microbiology		
Course Code: PBT02-		Cou	rse Title: Molecular Biology		
(T/P)					
Credits: 4	Compulsory				
Max. Marks: 100 Min. Passing Marks:			assing Marks:		
T_{-4-1} Normalism of Leasterney - (0)					

Total Number of Lectures = 60

Course Objectives: To illustrate the molecular concepts of life, through learning the organization and functions of DNA, RNA, and proteins, that can describe and demonstrate the regulation of various biological processes. To develop clear understanding of established concepts and perceive recent scientific developments in the field of molecular biology.

Unit	Contents	Number of Lectures
1	Genome Organization Organization of bacterial genome; Structure of eukaryotic chromosomes; Role of nuclear matrix in chromosome organization and function; Matrix binding proteins; Heterochromatin and Euchromatin; DNA reassociation kinetics (Cot curve analysis); Repetitive and unique sequences; Satellite DNA; DNA melting and buoyant density; Nucleosome phasing; DNase I hypersensitive region; DNA methylation & Imprinting	12
2	DNA Structure; Replication; Repair & Recombination Structure of DNA-A-,B-, Z- and triplex DNA; Measurement of properties-Spectrophotometric, CD, AFM and Electron microscope analysis of DNA structure; Replication initiation, elongation and termination in prokaryotes and eukaryotes; Enzymes and accessory proteins; Fidelity; Replication of single stranded circular DNA; Gene stability and DNA repair- enzymes; Photoreactivation; Nucleotide excision repair; Mismatch correction; SOS repair; Recombination: Homologous and non- homologous; Site specific recombination; Chi sequences in prokaryotes; Gene disruption; FLP/FRT and Cre/Lox recombination.	12
3	Prokaryotic & Eukaryotic Transcription Prokaryotic Transcription; Transcription unit; Promoters- Constitutive and Inducible; Operators; Regulatory elements; Initiation; Attenuation; Termination-Rho-dependent and independent; Anti-termination; Transcriptional regulation- Positive and negative; Operon concept- lac, trp, ara, his, and gal operons; Transcriptional control in lambda phage; Transcript processing; Processing of tRNA and rRNA	12

	Eukaryotic transcription and regulation; RNA polymerase structure and assembly; RNA polymerase I, II, III; Eukaryotic promoters and enhancers; General Transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); Activators and repressors; Transcriptional and post-transcriptional gene silencing	
4	 Post Transcriptional Modification Processing of hnRNA, tRNA, rRNA; 5'-Cap formation; 3'-end processing and polyadenylation; Splicing; RNA editing; Nuclear export of mRNA; mRNA stability; Catalytic RNA. Translation & Transport Translation machinery; Ribosomes; Composition and assembly; Universal genetic code; Degeneracy of codons; Termination codons; Isoaccepting tRNA; Wobble hypothesis; Mechanism of initiation, elongation and termination; Co-and post-translational modifications; Genetic code in mitochondria; Transport of proteins and molecular chaperones; Protein stability; Protein turnover and degradation 	12
5	Mutation; Oncogenes and Tumor suppressor gene Nonsense, missense and point mutations; Intragenic and Intergenic suppression; Frameshift mutations; Physical, chemical and biological mutagens; Transposition- Transposable genetic elements in prokaryotes and eukaryotes; Mechanisms of transposition; Role of transposons in mutation; Viral and cellular oncogenes; Tumor suppressor genes from humans; Structure, function and mechanism of action of pRB and p53 tumor suppressor proteins; Activation of oncogenes and dominant negative effect; Suppression of tumor suppressor genes; Oncogenes as transcriptional activators.	12

- (i) David P. Clark, Nanette J. Pazdernik and Michelle R. McGehee, Molecular Biology, 3rd Edition
- (ii) Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter, Molecular Biology of the Cell, Sixth Edition
- (iii) Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick, Lewin's GENES XII, 12th Edition
- (iv) Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). Molecular Biology of the Gene (5th ed.). Pearson
- (v) Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman
- (vi) Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D.,
- Wiley & sons, New York
- (vii) Old, R. W., Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics, 7th Edition: Blackwell Publishing.
- (viii)Brown, T. A. (2018). Genomes 4. (4th edition) New York: Garland Science Pub.

Suggested online links:

https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/transcription-translation/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/gene-regulation-and-the-lac-operon/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/agarose-gel-electrophoresis-dna-sequencing-pcr/ https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-

2011/recombinantdna/basic-mechanics-of-cloning/

Semester-VII

Practical

Course Title: Molecular Biology

Program/Class: Bachelor (Research) in Microbiology	Year: Fourth	Semester: Seven	
	Practical Subject: Microbiology		
Course Code: PBT02-(T/P)	Course Title: Molecular Biology-Practic		
Credits:1		Compulsory	
Max. Marks: 50	Min. P	assing Marks:	

Total Number of Hours = 60

Unit	Contents	Number of Hours
1	Plasmid DNA isolation and DNA quantitation	5
2	Restriction digestion	5
3	Preparation of competent cells	5
4	Agarose gel electrophoresis	5
5	Restriction Enzyme digestion of DNA	5
6	Purification of DNA from an agarose gel	5
7	DNA Ligation	5
8	Transformation of <i>E. coli</i> with standard plasmids, Calculation of transformation efficiency	10
9	Restriction mapping of recombinant plasmid.	5
10	Polymerase Chain reaction	5
11	RFLP analysis of the PCR product	5

Course Title: Microbiology and Industrial Applications				
Program/Class: Bachelor (Research) in Microbiology	Year: Fourth Semester: Sever		Semester: Seven	
		Paper-3 Tl	heory Subject: Microbiology	
Course Code: PBT03- (T/P)	Course Title: Microbiology and Industrial Applications			
Credits: 4	Compulsory			
Max. Marks: 100 Min. Passing Marks:		ssing Marks:		

Semester-VII Paper-3 (Theory) Course Title: Microbiology and Industrial Applications

Total Number of Lectures = 60

Course Objectives: To develop understanding of the basic concepts on Microbial growth and physiology, Microbial diversity and systematics. To develop understanding on the microbes and their relations to environment.

Unit	Contents	Number of Lectures
1	Microbial Diversity & Systematics. The Milestones in Microbiology: The discovery of microbial world by Antony van Leeuwenhocek, The controversy over spontaneous generation, Golden age of Microbiology. Criteria for classification of microorganism; Classification of Bacteria according to Bergey's manual; Molecular methods such as Denaturing Gradient Gel Electrophoresis (DGGE), Temperature Gradient Gel Electrophoresis (TGGE), Amplified rDNA Restriction Analysis and Terminal Restriction Fragment Length Polymorphism (T-RFLP) in assessing microbial diversity; 16S rDNA sequencing and Ribosomal Database Project.	12
2	Microbial Growth & Physiology Cell Structure and Functions: Prokaryote cell, size, shape and arrangement of bacterial cells, Cell wall, External and Internal structures to the cell wall of Eubacteria. Ultrastructure of Archaea (Methanococcus); Unicellular Eukaryotes (Yeast). Microbial growth: Batch, fed-batch, continuous kinetics, synchronous growth, methods of growth estimation, stringent response, thermal death of a bacterial cell. Methods in Microbiology: Pure culture techniques, The theory and practice of sterilization, Principles of microbial nutrition, Construction of culture media, Enrichment of culture techniques, Pure culture and its maintenance	12
3	Microbial Interactions and Infection Host-pathogen interactions; Microbes infecting animals and plants; Disease reservoirs, Epidemiological terminologies, Infectious diseases transmission, Pathogenicity islands and their role in bacterial virulence	12
4	Microbes and Environment Salient features of extremophiles (halophiles, thermophiles, psychrophiles) archaeabacteria. aerobic and anaerobic bacteria, phototrophic and gliding bacteria, prosthecate and budding	12

	bacteria. Ecological impacts of microbes; Symbiosis (Nitrogen fixation and ruminant symbiosis); Microbes and Nutrient cycles; Microbial communication system; Quorum sensing	
5	Industrial Applications Role of microorganisms in natural system and artificial system. Scope and importance of Microbiology in Biotechnology. Microbial fuel cells; Prebiotics and Probiotics; Vaccines. Microbial processes-production, optimization, screening, strain improvement, for the production of ethanol, organic acids, antibiotics etc. Basic principles in bioprocess technology; Media Formulation; Sterilization; Batch and continuous sterilization systems; Bioprocess control and monitoring variables such as temperature, agitation, pressure, pH.	12

- (i) Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Brock biology of microorganisms. Upper Saddle River, NJ: Prentice Hall/Pearson Education.
- (ii) Prescott, and Joanne M. Willey. Prescott's Microbiology. New York: McGraw-Hill, 2011.
- (iii)Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (1993). Microbiology: Concepts and applications. New York: McGraw-Hill.
- (iv)Tortora, Gerard J, Berdell R. Funke, and Christine L. Case (2004). Microbiology: An Introduction.
- (v) W. Mattha, C. Y. Berg, and J. G. Black. (2005). Microbiology, Principles and Explorations. Boston, MA: John Wiley & Sons.
- (vi)Ananthanarayana R, Panicker CKJ (2020). Ananthanarayana and Panicker's Textbook of Microbiology(11edition) Universities Press (India) Pvt. Ltd

Suggested online links:

https://microbeonline.com

https://ocw.mit.edu/courses/find-by topic/#cat=science&subcat=biology&spec=microbiology https://nptel.ac.in/courses/102/103/102103015/

Semester-VII

Practical

Course Title: Microbiology and Industrial Application

Program/Class: Bachelor (Research) in Microbiology	Year: F	ourth	Semester: Seven
		Pı	actical Subject: Microbiology
Course Code: PBT03-(T)	Course Title: Microbiology and Industrial Application - Practical		
Credits:1			Compulsory
Max. Marks: 50		Min. P	assing Marks:

Total Number of Hours = 60

Unit	Contents	Number of Hours
1	Sterilization, disinfection, safety in microbiological laboratory.	7
2	Preparation of media for growth of various microorganisms.	7
3	Isolation and maintenance of organisms by plating, Streaking and Serial dilution methods- slants and stab cultures, Storage of microorganisms.	
4	Gram Staining and enumeration of microorganisms.	7
5	Growth curve, measure of bacterial population by turbidometry and studying the effect of temperature, pH, carbon and nitrogen.	
6	6 Assay of antibiotics production and demonstration of antibiotic resistance.	
7	Isolation and screening of industrially important microorganisms.	9
8	Determination of thermal death point and thermal death time of microorganisms.	8

Semester - v II				
Paper-4 (Theory)				
Course Title: Bi	ostatistics and	Computer Ap	plications	
Program/Class: Bachelor	Year:	Fourth	Semester: Seven	
(Research) in				
Microbiology				
		Paper-4 T	heory Subject: Microbiology	
Course Code: PBT04-(T)	Course Code: PBT04-(T) Course Title: Biostatistics and Computer			
Applications				
Credits: 5 Compulsory				
Max. Marks: 100		Min. Pa	ssing Marks:	
T_{2}				

Semester-VII

Total Number of Lectures = 60

Course Objectives: To gain understanding on fundamentals of computers and biostatistics for managing and analyzing the scientific data generated.

Unit	Contents	Number of Lectures
1	Brief description and Tabulation of data and its graphical representation.	6
2	2 Measure of central tendency and description: Mean, Mode, Median, Range, Standard deviation, Variance, Idea of two types of errors and level of significance, Tests of significance (F and T test), Chi-Square tests.	
3	Simple linear regression and Correlation.	4
4	Introduction of digital computers: Organizations, Low-level and High-level languages, Binary systems.	6
5	Flow charts and Programming techniques.	
6	Introduction to data structures and data base concepts, Introduction to internet and its applications.	
7	Introduction to MS-office software covering word processing, spread sheets and presentation software.	6
8	Introduction to Harvard graphics/Sigma plotter.	4
9	Computer oriented statistical techniques: Frequency table of single discrete variable. Bubble sort, Computation of mean, Variance and standard deviations, T-test, Correlation coefficient.	8
10	Bio-informatics- Internet access and using web search engines to access biological databases, sequence, structure and strain database, Secondary and sequence analysis of DNA, RNA and proteins.	8

- (i) Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- (ii) Daniel, W. W. (1987). Biostatistics, a Foundation for Analysis in the Health Sciences. New York: Wiley
- (iii) Mariappan P. (2013) Biostatistics. Pearson
- (iv) Rastogi VB. (2015). Biostatistics (3rd Edition). MedTec
- (v) Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press
- (vi)Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience

Suggested online links:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-

092bioinformatics-and-proteomics-january-iap-2005/lecture-notes/

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biologyspring-2014/

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biologyspring-2014/lecture-slides/

https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016/ https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statisticsspring-2014/

https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2003/lecture-notes/

Course Title: Environmental Biochemistry and Biotechnology				
Program/Class: Bachelor (Research) in Microbiology	Year:	Fourth	Semester: Seventh	
	Paper-5 Theory Subject: Microbiology			
Course Code: PBT05-(T)	(T) Course Title: Environmental Biochemistry and			
	Biotechnology			
Credits:5 Compulsory			Compulsory	
Max. Marks: 100		Min. Pa	ssing Marks:	

Semester-VII Paper-5 (Theory)

Total Number of Lectures = 60

Course Objectives: The course is aimed at to make students understand and appreciate the importance of environmental biotechnology so as to develop remediation techniques for environmental degradation. To inspire the students to find ways to contribute personally and professionally for sustainable development of environment friendly societal development.

Unit	Contents	Number of Lectures
1	Introduction Environment; Basic concepts; Resources; Eco system: plants, animals, microbes; Ecosystem management; Renewable resources; Sustainability; Microbiology of degradation and decay;	12

	Role of Biotech in environmental protection; Control and management of biological processes.	
2	Pollution Environmental pollution; Source of pollution; Air, water as a source of natural resource; Hydrocarbons, substituted hydro carbons; Oil pollution; Surfactants; Pesticides; Measurement of pollution; Water pollution; Biofilm; Soil pollution; Radiactive pollution; Radiation; Ozone depletion; Green house effect; Impact of pollutants; Measurement techniques; Pollution of milk and aquatic animals.	12
3	Control, remediation and management Waste water collection; control and management; Waste water treatment; Sewage treatment through chemical, microbial and biotech techniques; Anaerobic processes; Anaerobic filters; Anaerobic sludge blanket reactors; Bioremediation of organic pollutants and odorous compounds; Use of bacteria, fungi, plants, enzymes, and GE organisms; Plasmid borne metabolic treatment; Bioaugmentation; Bioremediation of contaminated soils and waste land; Bioremediation of contaminated ground water; Macrophytes in water treatment; Phytoremediation of soil metals; Treatment for waste water from dairy, distillery, tannery, sugar and antibiotic industries.	12
4	Alternate source of energy Biomass as source of energy; Bioreactors; Rural biotechnology; Biocomposting; Biofertilizers; Vermiculture; Organic farming; Bio-mineralization; Biofuels; Bioethanol and biohydrogen; Solid waste management.	12
5	Environment and health in respect to genetics Gene and environment; Effect of carbon and other nanoparticles upon health; Gene mutation; Genetic testing; Genetic sensors; Environmental pollution and children; Human biomonitoring.	12

- (i) Thakur I. S. (2011) Environmental Biotechnology basic concepts and applications. I.K. International Publishing House Pvt. Limited
- (ii) Evans G M and J. C. Furlong (2003). Environmental Biotechnology: Theory and Applications. Wiley Publishers.
- (iii)Ritmann R and McCarty P L (2000). Environmental Biotechnology: Principle & Applications. 2nd Ed., McGraw Hill Science.
- (iv)Scragg A., (2005) Environmental Biotechnology. Pearson Education Limited.
- (v) Srinivas TR (2008). Environmental Biotechnology. New Age International Pvt. Ltd.

Suggested online links:

https://nptel.ac.in/courses/104/103/104103020/ https://nptel.ac.in/courses/102/105/102105088/

SEMESTER VIII							
	Paper 1 (Theory)						
Cour	se Title: Genetic Engin	eering					
Program/Class: Bachelor	Year: Fourth	Semester: Eighth					
(Research) in							
Microbiology							
	Paper-1	Theory Subject: Microbiology					
Course Code: PBT06-(T/P)	Course Code: PBT06-(T/P) Course Title: Genetic Engineerin						
Credits: 4	Credits: 4 Compulsory						
Max. Marks: 100	Min. I	Passing Marks:					
T + 1N + 1 (1 + (0							

SEMESTED VIII

Total Number of Lectures = 60

Course Objectives: The objectives of course include development of theoretical and practical knowledge on concepts of genetic engineering such as cloning vectors, PCR, restriction enzymes and DNA sequencing.

Unit	Contents	Number of Lectures
1	Basics Concepts DNA structure and properties; Restriction enzymes; DNA ligase, Klenow enzyme, T4 DNA polymerase, Polynucleotide kinase, Alkaline phosphate, cohesive and blunt end ligation; Linkers; Adaptors; Homopolymer tailing, Labeling of DNA, Hybridization technique: Northern, southern and colony hybridization, fluorescence in situ hybridization; Chromatin Immunoprecipitation; DNA Protein Interactions; electrophoretic shift assay.	12
2	Cloning Vectors Plasmids; M13 mp vector; PUC19 and Bluescript vectors, Phagemids, Lambda vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Mammalian expression vectors & retroviral vectors; Prokaryotic Expression vectors with GST-, His- and MBP- tags; Affinity purification of recombinant fusion proteins; Inclusion bodies; Methodologies to reduce formation of inclusion bodies.	12
3	Cloning Methodologies Bacterial Transformation; Isolation of mRNA and total RNA; cDNA and genomic libraries; cDNA and genomic cloning; Expression cloning; Phage display	12
4	PCR and Its Applications Primer design; Fidelity of thermostable enzymes; DNA polymerases; Types of PCR- reverse transcriptase, real time PCR, hot start PCR, colony PCR, cloning of PCR products; T-vectors; Proof reading enzymes; PCR in site specific mutagenesis; PCR in molecular diagnostics; Viral and bacterial detection.	12
5	Enzymatic DNA sequencing; Automated DNA sequencing; Chemical Synthesis of oligonucleotides; Introduction of DNA into mammalian cells; Transfection techniques; Gene silencing	12

	techniques; RNA interference and siRNA Gene knockouts and Gene	
	Therapy	

- (i) Principles of Gene Manipulation by R.W. Old and S.B. Primrose Third Edition Blackwell Scientific Publication
- (ii) Genes VI by B. Lewin
- (iii) From Genes to Clones by E. L. Whittecker.
- (iv)Brown, T. A. (2006). Gene Cloning and DNA Analysis: an Introduction. Oxford: Blackwell Pub.
- (v) Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press

Suggested online links:

https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=stemcells https://ocw.mit.edu/courses/materials-science-and-engineering/3-051j-materials-for-

biomedical-applications-spring-2006/lecture-notes/lecture13.pdf

https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/lecture-notes/

https://ocw.mit.edu/courses/health-sciences-and-technology/hst-535-principles-and-technology/hst-535-princ

practice-of-tissue-engineering-fall-2004/

https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/labs/mod1_3/

Semester-VIII

(Practical)

Course Title: Genetic Engineering

Program/Class: Bachelor (Research) in Microbiology	Year: Fourth	Semester: Eighth
	I	Practical Subject: Microbiology
Course Code: PBT06-(T/P)	Course Title: Genetic Engineering-practical	
Credits: 1		Compulsory
Max. Marks: 50) Min.	Passing Marks:

Total Number of Hours: 60

Unit	Contents	Number of Hours
1	Isolation of genomic DNA from E. coli	6
2	PCR amplification of bacterial/plant/animal-cell genomic region and analysis by agarose gel electrophoresis.	6

3	Preparation of plasmid DNA from <i>E. coli</i> DH5α and gel analysis.	6
4	Restriction digestion of vector (gel analysis) with Restriction endonucleases	6
5	Vector and Insert ligation	6
6	Transformation in <i>E. coli</i> DH5α.	6
7	Plasmid isolation and confirming recombinant by PCR and RE digestion.	6
8	Transformation of recombinant plasmid in <i>E. coli</i> Laboratory strain.	6
9	Induction of recombinant protein with IPTG and analysis on SDS- PAGE	6
10	Purification of protein on Ni-NTA/Glutathione/Mannose column and analysis of purified protein by SDS- PAGE.	6

SEMESTER VIII				
Paper-2 (Theory)				
Cours	se Title: Analytical Tech	niques		
Program/Class: Bachelor	Year: Fourth	Semester: Eighth		
(Research) in Microbiology				
Paper-2	Theory Subject: Microbio	ology		
Course Code: PBT(07)-(T/P) Course Title: Analytical Techniques				
Credits: 4 Compulsory				
Max. Marks: 100 Min. Passing Marks:		assing Marks:		

SEMESTER VIII

Total Number of Lectures = 60

Course Objectives: The course envisages conceptual and hands on learning of various analytical techniques. This course will enable students to perform spectroscopy techniques, enzyme assays, chromatography techniques etc.

Unit	Contents	Number of Lectures
1	Basic Techniques	12
	Buffers; Methods of cell disintegration; Enzyme assays and	
	controls; Detergents and membrane proteins; Dialysis,	
	Ultrafiltration and other membrane techniques.	
	Spectroscopy Techniques	
	Basic Principle, Instrumentation and Biological applications of:	
	UV and Visible light absorption spectroscopy,	
	Spectrofluorometry, CD and ORD, Atomic spectroscopy (Absorption and emission). Infrared spectroscopy, Raman	
	Scattering, Application of FT-IR in the study of biomolecules,	
	Nuclear Magnetic Resonance (NMR) spectroscopy, and EPR;	
	Mass spectroscopy and mass analyzers like ion trap, quadrupole,	
	magnetic sector, time of flight (ToF).	
2	Chromatography Techniques	12
	TLC and Paper Chromatography; Column chromatography	
	Chromatographic methods for macromolecule separation-Gel	
	permeation, Ion exchange, Hydrophobic, Reverse-phase and	
	Affinity chromatography; HPLC and FPLC.	
	Electrophoretic Techniques	
	Theory and application of Polyacrylamide and Agarose gel	
	electrophoresis; Native and SDS-PAGE electrophoresis;	
	Capillary electrophoresis; 2D Electrophoresis; Disc gel	
	electrophoresis; Gradient electrophoresis; Pulsed field gel	
2	electrophoresis	10
3	Centrifugation	12
	Basic principles; Mathematics & theory (RCF, Sedimentation coefficient etc); Types of centrifuge- Microcentrifuge, High	
	speed & Ultracentrifuges; Preparative centrifugation; Differential	
	& density gradient centrifugation; Application (Isolation of cell	
	components); Analytical centrifugation.	
4	Radioactivity	12

	Radioactive & stable isotopes; Radioactive decay; Units of radioactivity; Measurement of radioactivity; Geiger-Muller counter; Solid & Liquid scintillation counters (Basic principle, instrumentation & technique); Autoradiography; Applications of isotopes in biochemistry, Clinical application;	
_	Radioimmunoassay	
5	Advanced Techniques	12
	Protein crystallization; Enzyme and cell immobilization techniques	

- (i) Olaniyan, F. M., (2017) V Edition, Laboratory Instrumentation and Techniques, Createspace independent publishing platform
- (ii) Wilson, K., Walker, J. (eds.); Cambridge University Press, Cambridge, 2000, V Edition.
- (iii)Willard, M. H., (2004), VII Edition, Instrumental Methods of Analysis, CBS Publisher and distributor Private Limited.

Suggested online links:

https://nptel.ac.in/courses/102/103/102103044/

Semester-VIII

(Practical)

Course Title: Analytical techniques

Program/Class: Bachelor (Research) in Microbiology	Year: Fo	ourth	Semester: Eighth
		Pı	actical Subject: Microbiology
Course Code: PBT07-(T/P)	Course Title: Analytical Techniques-Practical		
Credits: 1			Compulsory
Max. Marks: 50		Min. P	assing Marks:

Total Number of Hours:60

Unit	Contents	Number of Hours
1	Paper chromatography of amino acids	10
2	TLC of lipids	10
3	Isolation of plasmid DNA from Ecoli	10
4	Agarose gel electrophoresis of plasmid DNA from Ecoli	10
5	Extraction and purification of protiens from plant and animal	10

6	SDS PAGE of BSA and extracted proteins	10
---	--	----

Semester- VIII Paper-3 (Theory)

Course Title: Molecular Virology

Program/Class: Bachelor	Year: Fourth	Semester: Eighth	
(Research) in Microbiology			
	Paper-3 Theory Subject: Microbiology		
Course Code: PBT08-(T)	Course Title: Molecular Virology		
Credits: 5		Compulsory	
Max. Marks: 100		Min. Passing Marks	
	T-t-1 N	(0	

Total Number of Lectures = 60

Course Objectives: The course objectives include learning of structural and genomic organization of different animal and plant viruses. The learning will enable students to take up research in challenging and evolving areas of virology, such as effective diagnostic and treatment of viral infections in plants and animals.

Unit	Contents	Number of Lectures
1	Structure of animal viruses and plant viruses; Classification of animal and plant viruses; Satellite viruses; Viroids; Virusoids, Prions etc.; Transmission of Viruses; Vectors for Virus transmission, Cell to cell and systemic movement of viruses. Impact of Viruses on Health and Economy: (Diseases causes by animal viruses and plant viruses; Economic loss due to important viruses); Bacterial Viruses: Lysogenic and Lytic Phages, Bacteriophage Typing.	12
2	General Genomic organization of animal viruses; Replication and Life cycle of: Poliovirus, Human Immunodeficiency virus (HIV), Influenza Virus, Rabies Virus, Poxvirus, Herpesvirus and Hepatitis viruses; Introduction to Cancer causing viruses and their mechanism of host-cell transformation.	12
3	General Genomic organization of plant viruses; Replication and Life cycle of plant viruses: Cauliflower Mosaic Virus (CMV), Tobacco Mosaic Virus (TMV), Rice Dwarf Virus, Citrus triesteza Virus.	12
4	Methods to diagnose animal virus infections: Electron microscopy, Tissue culture growth of viruses and Cytopathic effects, Virus quantitation assays, Viral serology: ELISA, neutralization assays; Molecular methods: hybridization, Real-time PCR, antiviral assays.	12

5	Methods to study plant viruses; Infectivity assays - Sap transmission,	12
	insect vector transmission, agroinfection (using Agrobacterium);	
	serological methods, immunelectrophoresis in gels, direct double-	
	antibody sandwich method, Dot ELISA, Immunosorbent electron	
	microscopy (ISEM), Polymerase chain reaction; Gene silencing, and	
	viral suppressors of gene silencing.	

 Acheson, N. H. (2011). Fundamentals of Molecular Virology (No. Ed. 2). John Wiley & Sons, Inc.

Suggested online links:

https://nptel.ac.in/courses/102/103/102103039/

SEMESTER VIII

Paper-4 (Theory)

Course Title: Cell and Developmental Biology

Program/Class: Bachelor (Research) in Microbiology	Year: Fourth	Semester: Eighth	
	Paper-4 Theory Subject: Microbiology		
Course Code: PBT09-(T)	Course Title: Cell and Developmental Biology		
Credits:5		Compulsory	
Max. Marks: 100	Min.	Min. Passing Marks:	

Total Number of Lectures = 60

Course Objectives: Produce a basic understanding of the unit of life i.e., cell by theoretical and pictorial learning of the organization and function of different cell organelles and developmental biology. Learning critical concepts, facts, and theories relevant to cellular mechanisms also understand the functions of different organelles of the cell and their interrelationships. Perceive recent developments in the field.

Unit	Contents	Number of Lectures
1	Cell Theory and Methods of StudyMicroscope and its modifications- Light, phase contrast andinterference, Fluorescence, Confocal, Electron (TEM and SEM),Electron tunneling and Atomic Force Microscopy, etc.Membrane Structure and FunctionStructural models; Composition and dynamics; Transport of ions andmacromolecules; Pumps, carriers and channels; Endo- and	

	Exocytosis; Membrane carbohydrates and their significance in cellular recognition; Cellular junctions and adhesions; Structure and functional significance of plasmodesmata	
2	Cellular compartments and intracellular sorting of proteins, ER & Lysosomes, peroxisomes, synthesis and sorting of proteins (lysosomal proteins, membrane proteins, secretory proteins). Nuclear transport.	
3	Endo-membrane System and Cellular Motility Organization of nucleus and nuclear membrane, structure and organization of chromatin. Cytoskeleton: Actin filaments and cell cortex, cilliary movements and cytoplasmic microtubules and intermediate filaments.	12
4	Cell CommunicationGeneral principle, Signal Molecules, Signaling through GPCRs, Second Messengers, Molecular Switches, Cells Sensitivity to a signal, IP3, Jak-STAT pathways, Cam Kinase-II, Receptor Tyrosine Kinase, Signaling in Plants	12
5	 Differentiation of specialized cells Stem cell differentiation. Differentiation of cancerous cells and role of proto-oncogenes Plant Meristem Organization and Differentiation Organization of shoot Apical Meristem (SAM); Organization of Root Apical Meristem (RAM); Pollen germination and pollen tube guidance; Phloem differentiation; Self-incompatibility and its genetic control; Embryo and endosperm development; Heterosis and apomixes. 	12

- (i) Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014).
 Molecular Biology of the Cell (6th Ed.). New York: Garland Science
- (ii) Cooper, G. M., and Hausman, R. E. (2013). **The Cell: a Molecular Approach** (6th Ed.). Washington: ASM ; Sunderland.
- (iii)Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York

Suggested online links:

https://nptel.ac.in/courses/102/103/102103012/ https://nptel.ac.in/courses/102/106/102106084/ https://nptel.ac.in/courses/102/107/102107075/

Semester-VIII Paper-5 (Theory + Practical) Course Title: Microbiological Techniques

Program/Class: Bachelor	Year: Fourth	Year: Fourth Semester: Eighth	
(Research) in			
Microbiology			
	Paper-5 Theory Subject: Microbiology		
Course Code: PMB01-	Course Tit	Course Title: Microbiological Techniques	
(T/P)			
Credits: 4		Compulsory	
Max. Marks: 100	Min.	Min. Passing Marks:	

Total Number of Lectures = 60

Course Objectives: To understand the interdependency of microbiology and biological systems such as the relationship between structure of microorganisms and their biological activity. To introduce students to biochemical and molecular techniques essential for microbiologists.

Unit	Content	Number of lectures
1	Experiments designed to familiarize students with the handling, identification and characterization of microorganisms and their activities particularly those of interest to man from different habitats.	10
2	Introduction to terms and equipments used in Microbiological laboratory, safety precautions, Microscopy: Microscope and its operations, components, types. Staining: types of dyes, preparation, staining techniques, their applications, Motility (Hanging drop method), Cell cytometry	15
3	Preparation of culture media-nutritional needs of microbes- dehydrated-selective-differential-autotrophic-heterotrophic, Culture techniques-adjustment of pH, buffers, pure culture techniques, prepartion of slants, sub-culturing, Preservation of microorganisms-slants, mineral oil, paraffin, Norris-bead method, lyophilization etc.	15
4	Isolation of pure microbial flora from natural and extreme environments-air, soil, water, food, Halophilic, thermophilic, psychrophilic and Acidophilic, Microbial growth measurements- Direct and indirect methods-cell count, turbidity measurement, percentage transmission, optical density, serial dilution, standard plate count, haemocytometry	10
5	Biochemical characterization of bacteria-BIOLOG plant method, carbohydrate fermentation, catalase, peroxidase, indole, methyl red, vogus-prausker, citrate utilization test (IMViC) etc. Assignment: Identification of unknown isolated pure culture upto genus level.	10

Books Recommended:

- (i) Brock Biology of Microorganisms, 14th edition
- (ii) Prescott's Microbiology, 10th edition
- (iii) R. Anathanarayan and Panikar, Text Book of Microbiology, 10th edition
- (iv)Gerard J. Tortora. Microbiology: An Introduction.
- (v) Tortora, Funke and Case, Mirobiology: An Introduction
- (vi)Michael J. Leboffe and Burton E. Pierce, Microbiology Laboratory Theory and Application, 3rd edition

Suggested online links:

https://microbeonline.com https://bio.libretexts.org http://britannica.com09/ET/1456899566CHE_P3_M5_etext.pdf http://phaostech.com https://keyence.com https://courses.lumenlearning.com

Semester-VIII

(Practical)

Course Title: Microbiological Techniques

Program/Class: Bachelor (Research) in Microbiology	Year: F	ourth	Semester: Eighth
	Practical Subject: Microbiology		
Course Code: PMB01- (T/P)	Course Title: Analytical Techniques-Practical		
Credits: 1			Compulsory
Max. Marks: 50		Min. P	assing Marks:

Total Number of Hours:60

Unit	Content (Practical)	Number of Hrs.
1	Preparation of culture media-nutritional needs of microbes-dehydrated- selective-differential-autotrophic-heterotrophic, adjustment of pH, buffers, pure culture techniques, preparation of slants, sub-culturing.	15
2	Isolation of pure microbial flora from natural and extreme environments, serial dilution, Microbial growth measurement, standard plate count, haemocytometry.	15
3	Staining: Dye preparation, staining techniques, their applications, Motility (Hanging drop method). Microscopy: Microscope and its operations, components, type. Preservation of microorganisms.	15
4	Biochemical characterization of bacteria-BIOLOG plate method, carbohydrate fermentation, catalase, peroxidase, indole, methyl red, vogus-prausker, citrate utilization test (IMViC), Nitrate Reduction Test etc.	15

SEMESTER IX Paper-1 (Theory) Course Title: Applied Microbiology

Program/Class: Master in Microbiology	Year: Fifth	Semester: Ninth
Paper-1 Theory Subject: Microbiology		
Course Code: PMB02-(T)	Course Title: Applied Microbiology	

Credits: 5	Compulsory
Max. Marks: 100	Min. Passing Marks:
- $ +$ 1 N $ 1$	

Total Number of Lectures = 60

Course Objectives: Students will get expertise in the applications of microbial functioning at the advanced level. They will make use of tools, technologies, and microbiological methods to independently carry out research and development work to solve the practical problems.

Unit	Contents	Number of Lectures
1	Study of microflora with special reference to silage, agroindustrial waste, environment, soil fertility and management.	12
2	Scope and importance of microbiology as applied to environment and industry, Petroleum and mining microbiology, Biopesticides and Microbiology of paints, films, pharmaceuticals and other stored products, fermented food products and Biotransformation of steroids	12
3	Environmental quality; Biodegradation of waste and pollutants; (i) solid waste disposal, sanitary, landfills and composting (ii) Treatment of liquid waste, sewage treatment, (iii) treatment and safety of water supply, Role of microbes in bioremediation, genetic engineering and biotechnology, Microbial degradation of pesticides and hydrocarbons	12
4	Microbial deterioration of cotton, jute, coir, wool, leather and wood and methods of preservation, Microbiology of biogas generation, utilization of alternate sources of energy, Utilization of agroindustrial waste for microbial biomass and protein	12
5	Soil fertility and management of agricultural soil: soil microflora and organic matter decomposition, rhizosphere, Soil-plant-microbe interactions and Biofertilizers.	12

Semester-IX Paper-2 (Theory) Course Title: Bioprocess Engineering and Technology

Course The. Dioprocess Engineering and Technology				
Program/Class: Master in	Year: I	Fifth	Semester: Ninth	
Microbiology				
Paper-2 Theory Subject: Microbiology				
Course Code: PBT12(T)	Course Title: Bioprocess Engineering and			
			Technology	
Credits: 5			Compulsory	
Max. Marks: 100		Mi	n. Passing Marks:	
Total No. of Lectures $= 60$				

Total No. of Lectures = 60

Course Objectives: To learn the basics of different types of fermentors and its accessories. Learning sterilization procedures, practical aspects of microbial growth kinetics, production kinetics, and inhibition models, types of bioreactor, its configurations and operation modes

based upon the nature of natural products. To solve problems and seek practical solutions for large scale implementation.

Unit	Contents	Number of Lectures
1	Basic principle of Biochemical engineering Isolation, screening and maintenance of industrially important microbes; Microbial growth (an example from each group, particularly with reference to industrially useful microorganisms); Strain improvement for increased yield and other desirable characteristics.	12
2	Concepts of basic mode of fermentation processes Bioreactor designs; Types of fermentation and fermenters; Concepts of basic modes of fermentation – Batch, fed batch and continuous; Conventional fermentation v/s biotransformation; Solid substrate, surface and submerged fermentation; Fermentation media; Measurement and control of bioprocess parameters; Scale up and scale down process.	12
3	Downstream processing Bioseparation- filtration, centrifugation, sedimentation, flocculation; Cell disruption; Storage and packaging; Treatment of effluent and its disposal.	12
4	Applications of enzymes in food processingMechanism of enzyme function and reactions in process techniques;Enzymic bioconversions e.g. starch and sugar conversionprocesses; High-Fructose Corn Syrup; Production, recovery andscaling up of enzymes and their role in food and other industries;Immobilization of enzymes and their industrial applications	12
6	Applications of Microbes in food process operations and production Fermented foods and beverages; Food ingredients and additives prepared by fermentation and their purification; fermentation as a method of preparing and preserving foods; Microbes and their use in pickling, producing colors and flavors, alcoholic beverages and other products; Process wastes-whey, molasses, starch substrates and other food wastes for bioconversion to useful products; Bacteriocins from lactic acid bacteria – Production and applications in food preservation.	12

Books recommended:

- (i) Stanbury P F and Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press
- (ii) Shuler M L and Kargi F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- (iii)Glazier AN and Nikaido H (2007).Microbial Biotechnology Fundamental & Applied Microbiology – Second Edition. Cambridge University Press.

- (iv)Casida LE (2019) Industrial Microbiology. Second Edition,New Age International Publisher.
- (v) Bailey J E and Ollis D F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.

Suggested online links:

https://ocw.mit.edu/high-school/biology/exam-prep/cellular-energetics/fermentationcellularrespiration/fermentation/

https://nptel.ac.in/courses/102/106/102106080/

https://nptel.ac.in/courses/102/106/102106048/

https://nptel.ac.in/courses/102/106/102106022/

Semester-IX Paper-3 (Theory)

Course Title: Bacterial Metabolism				
Program/Class: Master in	Year: Fifth	Semester: Ninth		
Microbiology				
Paper-3 Theory Subject: Microbiology				
Course Code: PMB03(T)	Course Title: Bacterial Metabolism			
Credits: 5		Compulsory		
Max. Marks: 100	Min.	Min. Passing Marks:		

Total Number of Lectures = 90

Course Objectives: To make students understand the basics of bacterial metabolism. Outline the metabolic pathways and function of pathways like fermentation, xenobiotic degradation, nitrogen fixation and methanogenesis etc., by bacterial system.

Unit	Content	Number of lectures
1	Detailed study of metabolic pathways involved in the release and dissimilation of substrates by heterotrophs and autotrophs with emphasis on the reactions of industrial and environmental concern.	20
2	Thermodynamic considerations of biological reactions, mechanisms of ATP synthesis, Photosynthesis and photometabolism in eubacteria, Respiration: aerobic and anaerobic, electron transport chain and Metabolism of secondary metabolites	20
3	Fermentation of lactic acid bacteria, ethanol fermenting organisms, propionic acid bacteria, butane-diol, butyric acid bacteria, enterobacteriaceae and clostridia	20
4	Biochemistry of xenobiotics degradation; aliphatic, aromatic and polycyclic compounds and Heavy metal toxicity: biochemical and genetic basis, resistance	15
5	Fixation of molecular nitrogen and regulation, Biochemistry of methanogenesis and Regulation: enzyme synthesis and enzyme activity.	15

- (i) Monika Rustogi, Bacterial Metabolism, Ist edition
- (ii) G. Gottschalk, Bacterial Metabolism, 2nd edition
- (iii) B. D. Singh and R. P. Singh, Microbial Metabolism and Molecular Biology.
- (iv) Brock Biology of Microorganisms, 14th edition
- (v) Prescott's Microbiology, 10th edition

Suggested online links:

https://ncbi.nlm.nih.gov https://springer.com https://frontierin.org https://nature.com https://cell press https://microbeonline.com Regulation of Metabolism in Bacteria-Global Regulation, by Dr Paustio`s Microbiology, You Tube Video dated 19-June-2020

Semester-IX Paper-4 (Theory) Course Title: Molecular Genetics

Program/Class: Master in Microbiology	Year: Fifth	Semester: Ninth
Paper-4 Theory Subject: Microbiology		
Course Code: PBT14-(T)	Course Title: Molecular Genetics	

Credit: 5	Compulsory
Max. Marks: 100	Min. Passing Marks:

Total No. of Lectures- = 60

Course Objectives: To learn basic concepts in molecular genetics. Explain genetic inheritance, discuss chromosome organization and sex determination so that students are able to relate genetic makeup of different organisms. Understanding the relationship between mutation and evolution.

Unit	Contents	Number of
		Lectures
1	Bacterial Mutants and mutations	12
	Isolation; Useful phenotypes (auxotrophic, conditional, lethal,	
	resistant); Mutation rate; Types of mutations (base pair changes;	
	frameshift; insertions; deletion; tandem duplication); Reversion vs.	
	suppression; Mutagenic agents; Molecular Mechanisms of	
	mutagenesis; Assay of mutagenic agents (Ames test)	
	Gene transfer in bacteria	
	History; Transduction- generalized and specialized; Conjugation-	
	F, F', HFr; F transfer; Hfr- mediated chromosome transfer;	
	Transformation- natural and artificial transformation; Merodiploid	

	generation; Gene mapping; Transposable genetic elements;	
	Insertion sequences; Composite and Complex transposons;	
	Replicative and non-replicative transposition; Genetic analysis	
	using transposons.	
2	Bacteriophages and Plasmids	12
	Bacteriophage-structure; Lambda phage – genetic map, lysogenic	
	and lytic cycles; Gene regulation; Filamentous phages such as M13;	
	Plasmids – natural plasmids; their properties and phenotypes;	
	Plasmid biology – copy number and its control; Incompatibility;	
	Plasmid survival strategies; Antibiotic resistance markers on	
	plasmids (mechanism of action and resistance); Genetic analysis	
	using phage and plasmid	
3	Mendelian Genetics	12
	Introduction to human genetics; Background and history; Types of	
	genetic diseases; Role of genetics in medicine; Human pedigrees;	
	Patterns of single gene inheritance-autosomal recessive; Autosomal	
	dominant; X linked inheritance; Complicating factors – incomplete	
	penetrance; variable expression; Multiple alleles; Co dominance;	
	Sex influenced expression; Hemoglobinopathies – Genetic	
	disorders of hemoglobin and their diseases.	
	Non-Mendelian inheritance patterns	
	Mitochondrial inheritance; Genomic imprinting; Lyon hypothesis;	
	isodisomy; Complex inheritance-genetic and environmental	
	variation; Heritability; Twin studies; Behavioral traits; Analysis of	
	quantitative and qualitative traits.	
4	Molecular Genetics of Lambda	12
	The genome packaging, replication and recombination, Regulation	14
	of Lytic and Lysogenic Cycles	
5	Gene mapping and human genome project	12
5	Physical mapping; linkage and association	14
	Population genetics and evolution	
	Phenotype; Genotype; Gene frequency; Hardy Weinberg law;	
	Factors distinguishing;	
	Hardy Weinberg equilibrium; Mutation selection; Migration; Gene	
	flow; Genetic drift;	
	now, Genetic uffit;	

- (i) Brown, T. A. (2012). Introduction to genetics: a molecular approach. Garland Science.
- (ii) Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A.
- (iii) Martin, K. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman
- (iv)Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). VIII editon Principles of Genetics. Wiley India.
- (v) Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. XI edition. Benjamin Cummings.
- (vi)Russell, P. J. (2009). Genetics: A Molecular Approach. III edition. Benjamin Cummings.
- (vii) Pierce, B. A. (2008). Genetics A Conceptual Approach. W. H. Freeman&co. NY

Suggested online link:

https://nptel.ac.in/courses/102/104/102104052/

Course Tit	Semest Paper-5 (le: Immunolog	(Theory)	unotechnology	
Program/Class: Master in Microbiology	e e e e e e e e e e e e e e e e e e e			
		Paper-5 T	heory Subject: Microbiology	
Course Code: PBT15- (T/P)	Course Tit	Irse Title: Immunology and Immunotechnology		
Credits: 4	Credits: 4 Compulsory			
Max. Marks: 100 Min. Passing Marks:		Passing Marks:		
	Total Number of	f Lectures =	- 60	

Total Number of Lectures = 60

Course Objectives: To understand the basics of immunology and facilitate the application of core immunology for healthy and diseases free nation. Evaluation of molecular and cellular basis of the development and function of the immune system in states of health and diseases. Correlate the theoretical immunology with clinical decision-making cancer diagnosis and treatment. Understanding the mechanisms of disease and therapeutic implications of vaccines and its development.

of <u>Lectures</u> 12
12
12

	antigens and super-antigens; Cytokines-properties, receptors and	
	therapeutic uses.	
3	Antigen-antibody interactions Precipitation, agglutination and complement mediated immune reactions; Antibodies as in-vitro and in-vivo probes; Advanced immunological techniques – RIA, ELISA, Western blotting, ELISPOT assay, Flow cytometry: Instrumentation and Applications; Identification of Immune Cells; Surface Plasmon resonance, Biosenor assays for assessing ligand-receptor interaction, CMI techniques- lymphoproliferation assay, Mixed lymphocyte reaction, Cell Cytotoxicity assays, Apoptosis.	12
4	Vaccine Technology Principles of Immunization, Techniques for analysis of immune response. General Idea of Active and passive immunization; Live, killed, attenuated, sub unit vaccines; recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; Peptide vaccines, conjugate vaccines; Hybridoma, antibody engineering - chimeric and hybrid monoclonal antibodies; Transfusion of Immuno-competent cells; stem cell therapy; Cell based vaccines.	12
5	Clinical Immunology Immunity to Infection: Bacteria, viral, fungal and parasitic infections (with examples from each group); Hypersensitivity – Type I-IV; Autoimmunity; Types of autoimmune diseases; Treatment of autoimmune diseases; Transplantation – Immunological basis of graft rejection; General Idea of Tumor immunology, Cancer immunotherapy; Immunodeficiency- Primary immunodeficiency's, Acquired or secondary immunodeficiency's	12

- (i) Punt J, Stranford S, Jones P., Owen JA, (2018). Kuby Immunology. (8th edition) New York: W.H. Freeman.
- (ii) Hay FC, Westwood OMR. (2008). Practical Immunology. (4th Edition). Wiley Blackwell
- (iii) Delves P J, Martin SJ, Burton DR, and Roitt IM. (2017). Roitt's Essential Immunology. (13th edition). Wiley-Blackwell.
- (iv)Hay FC, Westwood OMR. (2008). Practical Immunology. (4th Edition). Wiley Blackwell.
- (v) Murphy K, and Weaver C, (2016). Janeway's Immunobiology. (9th edition) New York: Garland Science.

Suggested online links:

https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=immunology https://nptel.ac.in/courses/102/105/102105083/ https://nptel.ac.in/courses/102/103/102103038/

Semester-X,

(Practical)

Course Title: Immunology and Immunotechnology

Program/Class: Master in	Year: Fi	ifth	Semester: Tenth
Microbiology			
	Practical Subject: Microbiology		
Course Code: PBT15-(T/P)	Course Title: Immunology and Immunotechnology-		
	practical		
Credits:1 Compulsory		Compulsory	
Max. Marks: 150	50 Min. Passing Marks:		
Credits:1 Max. Marks: 150		1	Compulsory

Total Number of Hours = 60

Unit	Contents	Number of Hours
1	Preparation of human blood smear and identification of cells.	6
2	Determination of blood groups	6
3	Determination of Rh antigen.	6
4	Estimation of antiserum by Mancini method	6
5	Estimation of antiserum by Ouchterlony method	6
6	Antiserum titer determination by ELISA.	6
7	DOT ELISA for the presence of specific antigen	6
8	Immunization, Collection of Serum	6
9	Immunoelectrophoresis.	6
10	Immunodiagnostics (Demonstration using commercial kits).	6

Semester-X Course Title: Research Project

Course Objective: To provide sufficient hands-on learning experience related to the area of specialization with a focus on research orientation. To take up specific research problem statements with reasonable assumptions and constraints. Perform a literature search and/or patent search in the area of interest. Design and Conduct experiments. Synthesize the results and arrive at scientific conclusions. Document the results in the form of technical report/presentation

Program/Class: Master in Microbiology	Year: Fifth	Semester: Tenth
Course Code: PMB16	Co	ourse Title: Research Project

Credits: 25	Compulsory

Paper-Elective

Course Title: Agriculture and Environmental Microbiology

Course Objectives: To make students understand and appreciate the microbiome in all its forms and the implications of microflora on the environment and agriculture. To broaden the understanding of global climate changes and the importance of microbiology in solid waste management etc. To give students a basic understanding of the major causes of environmental degradation on the planet, with specific reference to the Indian situation and how microflora can provide sustainable solutions to agricultural productivity and environmental degradation.

	ŀ	Elective Courses for Bachelor (Research) in Microbiology				
Code: PMB-E-01 (T) Course Title: Agriculture and Environmental Micr			obiology			
	Maximum Marks: 100					
Total Credits = 4, Total Hr.= 60						
Unit		Торіс	No. of Lectures			
I	Microorganisms and their habitats Structure and function of ecosystem; Terrestrial environment: soil profile and soil microflora; Aquatic Environment: microflora of fresh water and marine habitats; Atmosphere: Aeromicroflora and dispersion of microbes; Animal Environment: Microbes in/on human body (microbiomes) & animal (Ruminants) body; Extreme habitats: Extremophiles: Microbes thriving at high & low temperature, pH. High hydrostatic & osmotic pressures, salinity and low nutrient level; Microbial succession in decomposition of plant organic matter.		10			
II	II Microbial Interactions Microbe interactions: Mutualism, synergism, commensalism, competition, amensalism, parasitism, predation; Microbe-Plant interaction: positive-negative interaction; Microbe-Animal interaction: positive-negative interaction; Microorganism of rhizosphere, rhizoplane and phylloplane, mycorrhiza (types and its applications).		10			
III	Microbia Nitrogen denitrific	hemical cycling Carbon cycle: al degradation of cellulose, hemicellulase, lignin and chitin; a cycle: Nitrogen fixation, ammonification, nitrification, eation and nitrate reduction; Phosphorous cycle: Phosphate isation and solubilisation; Sulphur cycle: Microbes involved in cycle.				

IV	Waste management Solid waste management:	10
	Source and type of solid waste, method of solid waste disposal	
	(composting and sanitary landfill), Liquid waste management:	
	composition and strength of sewage (BOD & COD), primary,	
	secondary, (oxidation pond, trickling filter, activated sludge process	
	and septic tank) and tertiary sewage treatment.	
V	Microbial Bioremediation	10
	Principle and degradation of common pesticides, organic	
	(hydrocarbon, oil spills) and inorganic matter, biosurfactants.	
VI	Biofertilizer and Biopesticides	10
	Definition, Types- Bacterial, Fungal, Phosphate solubilizer, BGA &	
	associative; Mode of application; Advantages and Disadvantages.	
	Introduction and definition; Types of biopesticides; Integrated pest	
	management (IPM); Mode of action; Factor influencing; Applications,	
	advantages& disadvantages.	

Suggested Readings:

- 1. Alexander M., Introduction to soil microbiology, Wiley Eastern limited, New Delhi.
- 2. Alexopoulas C.J. and MIMS C.W., Introductory Mycology, New age international, New Delhi.
- 3. Aneja K.R., Experiments in Microbiology, plant pathology, Tissue culture and Mushroom cultivation, New Age International, New Delhi
- 4. Hurst, C.J., Environmental Microbiology, ASM press, Washington D.C.
- 5. Mehrotra A.S., Plant Pathology, Tata Mcgraw Hill Publications limited, New Delhi.
- 6. Pelczar M.J., Chan E.C.S and Kreig N.R., Microbiology, Mcgraw-Hill Book Company, New York.
- 7. Prescott Lansing M., Harley John P. and Klein Donald A., Microbiology, WCB Mcgraw-Hill, New York.
- 8. Salle A.J., Fundamental Principles of Bacteriology, Tata Mcgraw-Hill Publishing Company Limited, New Delhi.
- 9. Stacey R.H. and Evans H.J., Biological Nitrogen Fixation, Chapman and Hall limited, London.
- 10. Stanier R.Y., Ingraham J.L., General Microbiology, Prentice Hall of India Private Limited, New Delhi.

Suggestive digital platforms web links-

- 1. <u>https://www.classcentral.com/tag/microbiology</u>
- 2. <u>https://www.mooc-list.com/tags/biotechnology</u>
- 3. <u>https://asm.org/articles/2020/december/virtual-resources-to-teach-microbiology-techniques</u>
- 4. <u>https://www.futuredirections.org.au/publication/living-soils-role-microorganisms-soil-health</u>
- 5. <u>https://collegelearners.com/ebooks/agricultural-microbiology-pdf-free-download</u>

Paper-Elective

Course Title: Industrial Microbiology

Course Objectives: Recall knowledge on medium formulation and strain improvement for enhanced production of bioproducts. Develop fundamental knowledge to explore microbes for the production of industrially relevant primary and secondary metabolites. Extend knowledge on the industrial method of fermentation processes for the production of bioproducts.

Code: PMB-E-02 (T) Course Title: Industrial Microbiology			
Maximum Marks: 100			
	Total Credits = 4, Total Hr.= 60		
Unit	Торіс	No. of Lectures	
I	History & Multidisciplinary nature of Industrial microbiology. A typical Bio process: Introduction, advantages & limitations. Pater and intellectual property rights.	nts 10	
Π	Taxonomic diversity of industrially useful bacteria & fungi. Important characteristics of microbes used in Industrial Microbiology, Isolation techniques. Concept & examples of microorganisms classified as Generally Regarded as Safe (GRAS).	
III	Exploitation of microorganism and their products, Screening, development strategies, Immobilization methods.	Strain 5	
IV	Fermentation: Media, Raw material, Antifoaming agents, Buffers. Equipments, Fermenter design. Types of fermentation – Single, Batch, Continuous fermentation process. Down-stream processing steps: Detection and assay of the product, Recovery (intercellular and extracellular product). Purification (solvent extraction & chromatography)		
V	Production of Alcohol (industrial alcohol, wine, beer, whiskey), Organic acid (Citric acid), Antibiotic (Penicillin). Production of Vitamin (B12), Enzyme (Amylase), Amino acid (Glutamic acid), Hormones (Insulin), Vaccine (Hepatitis B).	10	
VI	Biofuel (Methane), Production of Biofertilizers & Biopesticides, Biotransformation of steroids.	10	

Suggested Readings:

1. Industrial Microbiology (2000) by AH Patel, Macmillan Publishers India

- 2. Biology of Industrial microorganism (1981) by Arnold L. Domain, Bejamin/ cummings Pub. Co.
- 3. Industrial Microbiology by Prescott & Dunns, AVI Publishing Company Inc.
- 4. Industrial Microbiology by Casida LE, New Age International (P) Ltd.

Suggestive digital platforms web links:

- 1. <u>http://foodhaccp.com/foodsafetymicro/onlineindex.html</u>
- 2. <u>http://www.cpe.rutgers.ed/courses/current/If0401wa.html</u>

Semester-VIII

Paper-Elective

Course Title: Biochemistry

Elective Courses For Bachelor (research) in Microbiology		
Code: PBT01-E- (T/P) Course Title: Biochemistry		
	Maximum Marks: 100	
Total Credits = 4, Total Hr.= 60		

Course Objectives: To develop a clear understanding of the concepts related to structures and functions of biomolecules for better understanding of energetics and regulation of metabolic pathways. To develop hands-on-ability in young minds to plan and execute different biochemical experiments in the laboratory.

Unit	Content	Number of lectures
1	Chemical basis of life: Composition of living matter; Water- properties, pH, pKa, Titration curves of weak acids, Buffers, Handerson-Hasselbach equations, ionization and hydrophobicity; Emergent properties of biomolecules in water; Water as a reactant.	8
2	Proteins: Amino acids as building blocks of proteins and their chemical properties, pI and pKa values, Primary, Secondary, Tertiary and Higher order structure of Proteins, Protein Sequencing, Ramchandran Plot, Conjugated proteins-Glycoproteins, Lipoproteins, Heamproteins.	8
3	Enzymes : General principles of catalysis, Quantitation of enzyme activity and efficiency, Enzyme characterization and Michaelis-Menten kinetics, Relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; Single substrate enzymes	8

4	Carbohydrates: Mono- Di- and Polysaccharides, Optical isomerism, Structure of Carbohydrates, Glycolysis, Gluconeogenesis, Pentose phosphate pathways, Citric acid cycle.	8
5	Lipids: Classification and structural analysis of fatty acids, Glycerols, Waxes, Glycolipids, Phospholipids, Sphingolipids, Sterols, Lipoproteins, β-oxidation, Biosynthesis of Cholesterol and Fatty acids	8
6	Nucleic acids: Biosynthetic pathways of purines and pyrimidines, degradation pathways	8
7	Bioenergetics- Basic principles; Equilibria and concept of free energy; Group transfer, concept of Entropy, Enthalpy and free energy, Oxidation and Reduction reactions, Electron Transport Chain, Oxidative phosphorylation; photosynthesis.	12

- 1. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox (2000) Maxmillan/ Worth publishers.
- Fundamentals of Biochemistry by Donald Voet and Judith G Voet (1999). John Wiley & Sons, NY
- 3. Biochemistry, 2nd edition, by R.H. Garrett and C.M. Grisham (1999). Saunders College Publishing, NY.
- Outlines of Biochemistry by E.E.Conn, P.K.Stumpf, G. Bruenimg and Ray H.Doi (1987). John Wiley & Sons, NY
- 5. Biochemistry, 2nd edition, by Laurence A. Moran, K.G. Scrimgeour, H. R. Horton, R.S. Ochs and J. David Rawn (1994), Neil Patterson Publishers Prentice Hall.
- 6. Berg, JM Tymoczko, JL. Gatto, GJ., Stryer, L. (2015). **Biochemistry.** (8th ed.) W H Freeman and Company New York.
- 7. Satyanarayana U. Chakrapani U. (2013). **Biochemistry**. (4th edition). Elsevier and Books and Allied (P) Ltd

Suggested online links:

- 1. https://nptel.ac.in/courses/104/105/104105076/
- 2. <u>https://nptel.ac.in/courses/102/106/102106087/</u>
- https://ocw.mit.edu/courses/find-bytopic/#cat=healthandmedicine&subcat=spectroscopy
- 4. https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session4/
- 5. <u>https://ocw.mit.edu/courses/biology/7-016-introductory-biology-fall-</u> 2018/lecturevideos/lecture-4 enzymes-and-metabolism/
- 6. https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session3/

Paper-Elective

Course Title: Biochemistry-Practical

Elective Courses For Bachelor (research) in Microbiology			
Code: PBT01-E (T/P)	Code: PBT01-E- (T/P) Course Title: Biochemistry-Practical		
	Maximum Marks: 50		
	Total Credits = 1, Total Hr.= 60		
Unit	Contents	Number of hours	
1	Titration of Amino Acids.	15	
2	Colorimetric determination of pKa.	15	
3	Quantitative estimation of Proteins and Sugars.	15	
4	Separation techniques- Centrifugation, Chromatography (Gel Permeation, Ion exchange, TLC, etc.)	15	

Semester-VIII

Paper-Elective

Course Title: Molecular Biology

	Elective Courses For Bachelor (research) in Microbiology				
Code:	Code: PBT02-E- (T/P) Course Title: Molecular Biology				
		Maximum Marks: 100			
	Total Credits = 4, Total Hr.= 60				
Course Objectives: To illustrate the molecular concepts of life, through learning the organization and functions of DNA, RNA, and proteins, that can describe and demonstrate the regulation of various biological processes. To develop clear understanding of established concepts and perceive recent scientific developments in the field of molecular biology.					
Unit	Unit Contents Number of				
			Lectures		
1	Unit-I Genome	Organization	12		

	Organization of bacterial genome; Structure of eukaryotic chromosomes; Role of nuclear matrix in chromosome organization and function; Matrix binding proteins; Heterochromatin and Euchromatin; DNA reassociation kinetics (Cot curve analysis); Repetitive and unique sequences; Satellite DNA; DNA melting and buoyant density; Nucleosome phasing; DNase I hypersensitive region; DNA methylation & Imprinting	
2	Unit-II DNA Structure; Replication; Repair & Recombination	12
	Structure of DNA-A-,B-, Z- and triplex DNA; Measurement of properties-Spectrophotometric, CD, AFM and Electron microscope analysis of DNA structure; Replication initiation, elongation and termination in prokaryotes and eukaryotes; Enzymes and accessory proteins; Fidelity; Replication of single stranded circular DNA; Gene stability and DNA repair- enzymes; Photoreactivation; Nucleotide excision repair; Mismatch correction; SOS repair; Recombination: Homologous and non-homologous; Site specific recombination; Chi sequences in prokaryotes; Gene disruption; FLP/FRT and Cre/Lox recombination.	
3	Unit III Prokaryotic & Eukaryotic Transcription	12
	Prokaryotic Transcription; Transcription unit; Promoters- Constitutive and Inducible; Operators; Regulatory elements; Initiation; Attenuation; Termination-Rho-dependent and independent; Anti-termination; Transcriptional regulation-Positive and negative; Operon concept- lac, trp, ara, his, and gal operons; Transcriptional control in lambda phage; Transcript processing; Processing of tRNA and rRNA Eukaryotic transcription and regulation; RNA polymerase structure and assembly; RNA polymerase I, II, III; Eukaryotic promoters and enhancers; General Transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); Activators and repressors;	
	Transcriptional and post-transcriptional gene silencing	
4	 Unit-IV Post Transcriptional Modification Processing of hnRNA, tRNA, rRNA; 5'-Cap formation; 3'-end processing and polyadenylation; Splicing; RNA editing; Nuclear export of mRNA; mRNA stability; Catalytic RNA. Translation & Transport Translation machinery; Ribosomes; Composition and assembly; 	12
	Iranslation machinery; Ribosomes; Composition and assembly; Universal genetic code; Degeneracy of codons; Termination codons; Isoaccepting tRNA; Wobble hypothesis; Mechanism of initiation, elongation and termination; Co-and post-translational modifications; Genetic code in mitochondria; Transport of proteins and molecular chaperones; Protein stability; Protein turnover and degradation	

5	Unit-V Mutation; Oncogenes and Tumor suppressor gene	12
	Nonsense, missense and point mutations; Intragenic and Intergenic	
	suppression; Frameshift mutations; Physical, chemical and biological	
	mutagens; Transposition- Transposable genetic elements in	
	prokaryotes and eukaryotes; Mechanisms of transposition; Role of	
	transposons in mutation; Viral and cellular oncogenes; Tumor	
	suppressor genes from humans; Structure, function and mechanism of	
	action of pRB and p53 tumor suppressor proteins; Activation of	
	oncogenes and dominant negative effect; Suppression of tumor	
	suppressor genes; Oncogenes as transcriptional activators.	

- 1. Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). Molecular Biology of the Gene (5th ed.). Pearson
- Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman
- 3. Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York
- 4. Old, R. W., Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics, 7th Edition: Blackwell Publishing.
- 5. Brown, T. A. (2018). Genomes 4.(4 edition) New York: Garland Science Pub.

Suggested online links:

- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/
- 2. https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/transcription-translation/
- **3.** https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/molecularbiology/gene-regulation-and-the-lac-operon/
- 4. https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/
- 5. https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/agarose-gel-electrophoresis-dna-sequencing-pcr/
- 6. https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinantdna/basic-mechanics-of-cloning/
- https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentalsinbiological-engineering-fall-2007/labs/mod1_3/
- 8. https://nptel.ac.in/courses/102/103/102103045/#

Paper-Elective

Course Title: Molecular Biology-Practical

	Elective Courses For Bachelor (research) in Microbiology		
Code: PBT02 (T/P)	-E- Course Title: Molecular Biology-P	ractical	
	Maximum Marks: 50		
	Total Credits = 1, Total Hr.= 60		
Unit	Contents	Number of Hours	
1	Plasmid DNA isolation and DNA quantitation	5	
2	Restriction digestion	5	
3	Preparation of competent cells	5	
4	Agarose gel electrophoresis	5	
5	Restriction Enzyme digestion of DNA	5	
6	Purification of DNA from an agarose gel	5	
7	DNA Ligation	5	
8	Transformation of <i>E.coli</i> with standard plasmids, Calculation of transformation efficiency	10	
9	Restriction mapping of recombinant plasmid.	5	
10	Polymerase Chain reaction	5	
11	RFLP analysis of the PCR product	5	

Semester-VIII

Paper-Elective

Course Title: Plant Biochemistry and Biotechnology

E Elective Courses For Bachelor (research) in Microbiology			
Code: PBT10-E- (T/P)	Course Title: Plant Biochemistry and Biotechnology		
Maximum Marks: 100			
Total Credits = 4, Total Hr.= 60			
Course Objectives: Describe the developmental processes operating in plants, hands on training of plant tissue culture & micropropagation methods. Evaluate and			

perform biotechnological tools for genetically modified plants generation in agriculture and industry. Understands the basics of sterilization and culture preparation methods and highlights the importance and fundamentals of plant tissue culture. To develop basic understanding of need of vectors for plant transformation. Create awareness for the suitability of transgenics, in the society, industrialists, and environment. To emphasize the interest in young mind for startup through biotechnology-based industry.

Unit	nit Contents N	
Unit	Contents	Number of
		oi Lectures
1	Plant Tissue Culture	12
	Historical perspective; Totipotency; Organogenesis; Somatic	
	embryogenesis; Regulation and applications; Artificial seed	
	production; Micropropagation; Somaclonal variation; Androgenesis and its applications in genetics and plant breeding; Germplasm	
	conservation and cryopreservation.	
	Protoplast Culture and Somatic Hybridization	
	Protoplast isolation; Culture and usage; Somatic hybridization –	
	methods and applications; Cybrids and somatic cell genetics.	
2	Agrobacterium-Plant interaction; Virulence; Ti and Ri plasmids;	12
	Opines and their significance; T-DNA transfer; Disarming the Ti	
	plasmid.	
	Genetic Transformation	
	Agrobacterium-mediated gene delivery; Cointegrate and binary	
	vectors and their utility; Direct gene transfer- PEG-mediated,	
	electroporation, particle bombardment and alternative methods; Screenable and selectable markers; Characterization of transgenics;	
	Chloroplast transformation; Marker-free methodologies; Gene	
	targeting.	
3	Strategies for Introducing Biotic and Abiotic Stress	12
	Resistance/Tolerance	
	Bacterial resistance; Viral resistance; Fungal resistance; Insects and	
	pathogens resistance; Herbicide resistance; Drought, salinity, thermal	
	stress, flooding and submergence tolerance	
4	Somaclonal variations, Plants as Biofactories	12
	Concept of biofactories; Fermentation and production of industrial	
	enzymes, vitamins and antibiotics and other biomolecules; Cell	
	cultures for secondary metabolite production; Production of	
	pharmaceutically important compounds; Bioenergy generation.	

5	Principals and applications of cryopreservation	12
	Secondary product formation by cell suspension cultures	
	Culture media and environmental conditions supporting secondary	
	product formation, Biotransformation of terpenoids, alkaloids and	
	steroids by suspension and immobilized plant cell cultures.	
	Biosafety and containment practices	

- 1. Berg, JM Tymoczko, JL. Gatto, GJ., Stryer, L. (2015). Biochemistry. (8th ed.) W H Freeman and Company New York.
- 2. Nelson DL. Cox MM. (2017) Lehninger Principles of Biochemistry (7th ed.). W H Freeman New York.
- 3. Boyer RF. (2012) Biochemistry laboratory : modern theory and techniques(2nd Edition). Pearson Education, Inc
- 4. Jain JL. Jain S. Jain N. (2005). Fundamentals of Biochemistry. (6th edition). S Chand and Company Ltd.
- 5. Satyanarayana U. Chakrapani U. (2013). Biochemistry (4th edition). Elsevier and Books and Allied (P) Ltd
- 6. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science
- 7. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 8. Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- 9. Dubey RC. (2014) A Textbook of Biotechnology (5th edition) S Chand and Company Ltd
- Singh BD. (2015). Biotechnology: Expanding Horizons (4th edition). Kalyani Publishers

Suggested online links:

- 1. https://nptel.ac.in/courses/102/106/102106080/
- 2. https://nptel.ac.in/courses/102/103/102103016/

Semester-VIII

Practical

Course Title: Plant Biochemistry and Biotechnology

Elective Courses For Bachelor (research) in Microbiology			
Code:	Code: PBT10-E- (T/P) Course Title: Plant Biochemistry and Biotechnology-Practical		
Maximum Marks: 50			
Total Credits = 1, Total Hr.= 60			

Unit	Contents	Number of Hours
1	SOPs of Plant Tissue Culture laboratory	10
2	Preparation of media.	10
3	Surface sterilization of explants	10
4	Micropropagation of plants	10
5	Green house and hardening practices	10
6	Clonal fidelity of regenerated plants.	10